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Adversarial Examples

e “Axioms” for today: Modern neural networks...
1. Memorize their training data near-perfectly.
2. Are vulnerable to small perturbations.

* What is going on?

 Some hypotheses:
* 1. Robust memorization is computationally hard
e 2. Neural networks cannot memorize robustly
e 3. Robust memorization needs more data
e 4, Robust memorization requires large models
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Law of Robustness



The Model of Memorization

e Input: n = d°M random points x4, ... Xy, on d-dimensional unit sphere.
* Labels y; = g(x;) + Z;: signal + noise.

e Noise variance = g 2.

* Perfect memorization: f: R% — R fits data perfectly:
fx)=y; 1€{1,2, ..,n}

e Partial memorization: fit data much better than the signal:

Z(f(xi) —y)? < %z zZt.



Robustness and Memorization

Definition: a function f: R% — R is L-robust if Lip(f) < L, i.e.

() = fFD] < L|x — x|
* Reason: Lipschitz implies robustness to adversarial perturbations!
* This is a strong notion of robustness.

Fact: w.h.p, perfect memorization is possible with an O(1)-robust function.

* Proof: w.h.p, |xl- — xj| > 0.1 for all i, j. Follows from Kirszbraun extension theorem.
 This is abstract and non-constructive...

How complicated does a good memorizer need to be?

More precisely: how large a function class F must be fixed beforehand to contain
a (robust) memorizer w.h.p?



Size vs Robustness

 Q:if some f € F (robustly) memorizes, how large is the function class F?

 Measure size by # parameters P. Formally: w - f,, € F for w € R? with:

lw| < poly(d), |fw(x) = f, ()| < poly(d) - |lw—-w"| Yw,w', x.
e Captures “true” parameter count for convolutional networks, weight sharing, ...

e P is # parameters in the model class
e Count all possible weights even under post-training sparsification.

* Fact: P = n parameters suffice to memorize
* [Baum 1988]: use a 2-layer neural network with n/d neurons. Not robust.

e Fact: P = nd parameters suffice to robustly memorize.
e Put 1 radial basis function on each input. Each RBF specified by d parameters.



A Universal Law of Robustness

. . / d
* Conjecture [Bubeck-Li-Nagaraj 20]: Lip(f) = n? for 2-layer neural networks.

* Theorem [Bubeck-S. 21]: for P-parameter function classes F, partial
memorization of noisy data by some f € F implies:

nd
\lP

0.99

Lip(f) > o

* Input distribution can be a mixture of n*-”” isoperimetric components.
* Heteroscedastic noise is also fine. Just need 0% = E[Var[yilxi]].

e Tight for any P > n: project down to dimension d = P /n, use n RBFs in R4



|Isoperimetry

» Key property of high-dimensional space: isoperimetry. Many related definitions.

* Relevant Definition: u is c-isoperimetric if for any L-Lipschitz f: R? - R,

PHf (o) —EF[f]l = t] < 26”5l

I”

* Applies to many “genuinely high-dimensional” distributions

* Sphere/Gaussian

* Cube with Hamming distance

* Negatively curved manifolds, Gaussian plus small independent noise,...

* Holds when u has a nice log-Sobolev constant.



Interpretation

* Real datasets are mixtures
* Cat component vs dog component.
e 1 cat, 2 cat, red cat, blue cat?
 Components could have small diameter or live on a lower-dimensional manifold.
* Optimistically, law of robustness holds with appropriate effective dimension.
* Determine naive vs effective dimension scaling empirically to extrapolate?

* What is noise?
* In theory: no noise = nothing to learn

* Real life: noise is “complicated” part of the function?
* Learning algorithms may have “inductive bias” that helps to learn the simple part.



MNIST and ImageNet

* Back-of-the-envelope on robust ImageNet leads to realistic modern parameter scale.
* Lots more work needed to make a real prediction. Goal is to illustrate potential for scaling laws.

* MNIST results from [MMSTV 18]:
*n=~10°d = 28% =~ 103.

 Good robust accuracy achieved at P = 10° parameters.
- Effective dimension d ~ = = 10! = d/1007?

n

* ImageNet

‘N = 107, dl ~ 10°. constant for image
. 7 nyd effective dimension?
* Prediction: P; =~ n;d; = ﬁ ~ 1010,

* ImageNet pictures “seem” more complicated than MNIST, so maybe 1011?
* Current models: typically P = 10°.

Proportionality




Generalization Perspective

Recall: small Rademacher complexity R+ implies uniform generalization for all f € F.

Classically, function class F has Rademacher complexity
log|F| P

 onooqn
Theorem: for Lipschitz function classes F and mixtures of isoperimetric distributions,
p
\ nd

Consequence: law of robustness holds for any Lipschitz loss function (not just square-loss).

Ry <

Ry <




Open Directions

e Other norms
 Just need Lipschitz functions to concentrate. When does this hold in
e.g. infinity or Wasserstein norm?
 More refined notions of robustness

e Sobolev norms like E#|Vf (x)|? don’t work. Need small gradient
everywhere.

* Connect more precisely to robust test error?
* Algorithmic law of robustness for gradient-based training?

* Might not require noisy labels.
* Empirical study and Architecture-Specific Scaling Laws

* Could there be different slightly different laws of robustness for
CNNs, transformers, ...?
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