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Application: Music recommendation platform (Spotify, Soundcloud,
Deezer etc.)

A set of songs is suggested to a user every day.

Every song is associated with a stochastic reward (e.g., click
probability).

: Maximize the total expected reward collected within T days.

Nice-to-have features for such a system:
Diversity within a day (do not suggest very similar songs)

Non-repetitiveness (do not spam the user with the same song
again and again)
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Diversity within a day (do not suggest very similar songs on the same
day)

d features (e.g., music genres).

Associate each song with a vector in {0,1}7.

Set the i-th coordinate to 1, if the song belongs to genre i.

Favor diversity: The songs suggested to the user in the same day
must be linearly independent.

Linear independence can be modeled as a matroid!

Recall: A matroid M over a ground set A of elements is defined as
a collection of independent sets Z, such that:

IfSeZand T CSthenTeZ.

If S, T €Z and |T| < |S|, then Je € S such that T + e € 7.
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Non-repetitiveness (do not spam the user with the same song again
and again)

Each song i is associated with a delay d;.

Avoid spamming: After a song i is suggested, it cannot appear
again for the next d; days.

The delay of each song can depend on factors such as popularity,
promotion and more.
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We consider the following variant of multi-armed bandits (MAB):
Set A of k arms, each associated with:

An unknown nonnegative reward distribution.
A fixed and known delay d; € N>;.

Known matroid M = (A, Z) over the ground set of arms (access via
independence oracle).

Unknown time horizon of T rounds.

At each round, we play a subset of arms which is an independent set
of M. We observe the realization of the reward of each arm played
(semi-bandit feedback), and collect the sum.

Once an arm i is played, it cannot be played again for the
subsequent d; — 1 rounds.

Goal: Maximize the expected reward collected within T rounds.
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Figure: Round . ..
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Rank-1 matroids (i.e., 1 arm per round): 3 (1 — 1/e)-approximation
for deterministic and known rewards.

“Blocking Bandits”, [Basu, Sen, Sanghavi & Shakkottai, NeurlPS
'19].

Delays are all 1 (i.e., arms are never blocked):

“Matroid Bandits: Fast Combinatorial Optimization with Learning”,
[Kveton, Wen, Ashkan, Eydgahi & Eriksson, AUAI '16].

Alternative model favoring non-repetitiveness:

Expected reward of an arm is an increasing concave function of the
last time it was played.

“Recharging Bandits” [Kleinberg & Immorlica, FOCS '18].
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Assume for now that the rewards are deterministic and known.

The problem is strongly NP-hard, even when all the rewards are 1.

Greedy approach: At each round, play the maximum reward
independent set among the available (i.e., non-blocked) arms.

(1 — t/e)-approx. for one arm per round [Basu et al., NeurlPS '19].

1/>-approx. for general independence systems (including matroids)
[Atsidakou et al., ICML '21].

But the analysis of 1/2-approximation is tight for general matroids.
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Interleaved-Greedy collects in expectation at least

(1 - 1) - OPT(T) — O (dmax - tk(M)),

e

where OPT(T) is the optimal reward for T rounds, dmayx is the maximum
delay of the instance, and rk(M) the rank of the matroid.

Our proof uses tools from the analysis of submodular functions:

Convex relaxation based on the concave closure of submodular
functions.

Correlation gap of submodular functions.
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In the bandit setting, the reward distributions are initially unknown.

Goal: Minimize the (1 — 1/e)-approximate regret, defined as:

(1 —1/e) - OPT(T) — E [Reward of Bandit Policy] .

Equivalently, upper bound the difference between the expected
reward collected by Interleaved-Greedy and the bandit policy.
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Interleaved-UCB for the bandit setting:

Online: At everyround t =1,2,...:
Let G; C A be the subset of arms such that, for any i € G;, the
interval [t - di’ +r,(t+1)- di’ -+ r;) contains an integer.
Compute a maximum-reward-independent set, A;, contained in G,
according to the current estimates.
Play the arms in A; collect the rewards.
Update the estimates.

The sets {G;}; are independent of the trajectory of the observed
rewards.

The sequence {G;}; is identically distributed in Interleaved-Greedy
and Interleaved-UCB.

Key-idea: We can upper-bound the regret , assuming
that the sequence of sets {G;}; is the same in both algorithms.
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Combining the above idea with (/) the strong basis exchange property of
matroids and (ii) standard UCB arguments, we show the following result:

The (1 — /e)-approximate regret can be upper-bounded as

O (ky/TT(T) + K2 + da - r(M))

where k is the number of arms, r(M) is the rank of M, and dp.x Is the
maximum delay of the instance.

Almost matching the regret lower bound for standard (non-blocking)
matroid bandits.
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