Recurrent Submodular Welfare and Matroid Blocking Semi-Bandits

Orestis Papadigenopoulos & Constantine Caramanis The University of Texas at Austin

NeurIPS 2021

► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)

- ► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)
- A set of songs is suggested to a user every day.

- ► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)
- A set of songs is suggested to a user every day.
- Every song is associated with a stochastic reward (e.g., click probability).

- ► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)
- A set of songs is suggested to a user every day.
- Every song is associated with a stochastic reward (e.g., click probability).
- ▶ Goal: Maximize the total expected reward collected within *T* days.

- ► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)
- A set of songs is suggested to a user every day.
- Every song is associated with a stochastic reward (e.g., click probability).
- ▶ Goal: Maximize the total expected reward collected within *T* days.

Nice-to-have features for such a system:

- ► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)
- A set of songs is suggested to a user every day.
- Every song is associated with a stochastic reward (e.g., click probability).
- ▶ Goal: Maximize the total expected reward collected within *T* days.

Nice-to-have features for such a system:

1. Diversity within a day (do not suggest very similar songs)

- ► **Application**: Music recommendation platform (Spotify, Soundcloud, Deezer etc.)
- A set of songs is suggested to a user every day.
- Every song is associated with a stochastic reward (e.g., click probability).
- ▶ Goal: Maximize the total expected reward collected within *T* days.

Nice-to-have features for such a system:

- 1. Diversity within a day (do not suggest very similar songs)
- 2. Non-repetitiveness (do <u>not</u> spam the user with the same song again and again)

Diversity within a day (do <u>not</u> suggest very similar songs on the same day)

► *d* features (e.g., music genres).

- ▶ *d* features (e.g., music genres).
- Associate each song with a vector in $\{0,1\}^d$.

- ▶ *d* features (e.g., music genres).
- Associate each song with a vector in $\{0,1\}^d$.
- ▶ Set the *i*-th coordinate to 1, if the song belongs to genre *i*.

- ▶ *d* features (e.g., music genres).
- Associate each song with a vector in $\{0,1\}^d$.
- ▶ Set the *i*-th coordinate to 1, if the song belongs to genre *i*.
- ► **Favor diversity**: The songs suggested to the user in the same day must be linearly independent.

- ▶ *d* features (e.g., music genres).
- Associate each song with a vector in $\{0,1\}^d$.
- ▶ Set the *i*-th coordinate to 1, if the song belongs to genre *i*.
- ► **Favor diversity**: The songs suggested to the user in the same day must be linearly independent.
- Linear independence can be modeled as a matroid!

- ▶ *d* features (e.g., music genres).
- Associate each song with a vector in $\{0,1\}^d$.
- ▶ Set the *i*-th coordinate to 1, if the song belongs to genre *i*.
- ► **Favor diversity**: The songs suggested to the user in the same day must be linearly independent.
- Linear independence can be modeled as a matroid!
- **Recall**: A matroid \mathcal{M} over a ground set A of elements is defined as a collection of independent sets \mathcal{I} , such that:
 - 1. If $S \in \mathcal{I}$ and $T \subset S$ then $T \in \mathcal{I}$.
 - 2. If $S, T \in \mathcal{I}$ and |T| < |S|, then $\exists e \in S$ such that $T + e \in \mathcal{I}$.

Non-repetitiveness (do \underline{not} spam the user with the same song again and again)

Non-repetitiveness (do <u>not</u> spam the user with the same song again and again)

 \triangleright Each song *i* is associated with a *delay* d_i .

Non-repetitiveness (do <u>not</u> spam the user with the same song again and again)

- \triangleright Each song *i* is associated with a *delay* d_i .
- **Avoid spamming**: After a song i is suggested, it cannot appear again for the next d_i days.

Non-repetitiveness (do <u>not</u> spam the user with the same song again and again)

- \triangleright Each song *i* is associated with a *delay* d_i .
- ► Avoid spamming: After a song i is suggested, it cannot appear again for the next d_i days.
- ► The delay of each song can depend on factors such as popularity, promotion and more.

- ► Set *A* of *k* arms, each associated with:
 - An <u>unknown</u> nonnegative reward distribution.
 - ▶ A <u>fixed</u> and <u>known</u> delay $d_i \in \mathbb{N}_{\geq 1}$.

- ► Set *A* of *k* arms, each associated with:
 - An <u>unknown</u> nonnegative reward distribution.
 - ▶ A <u>fixed</u> and <u>known</u> delay $d_i \in \mathbb{N}_{\geq 1}$.
- Nown matroid $\mathcal{M} = (A, \mathcal{I})$ over the ground set of arms (access via independence oracle).

- ► Set *A* of *k* arms, each associated with:
 - An <u>unknown</u> nonnegative reward distribution.
 - ▶ A <u>fixed</u> and <u>known</u> delay $d_i \in \mathbb{N}_{\geq 1}$.
- Nown matroid $\mathcal{M} = (A, \mathcal{I})$ over the ground set of arms (access via independence oracle).
- <u>Unknown</u> time horizon of T rounds.

- ► Set *A* of *k* arms, each associated with:
 - An <u>unknown</u> nonnegative reward distribution.
 - ▶ A <u>fixed</u> and <u>known</u> delay $d_i \in \mathbb{N}_{\geq 1}$.
- Nown matroid $\mathcal{M} = (A, \mathcal{I})$ over the ground set of arms (access via independence oracle).
- <u>Unknown</u> time horizon of T rounds.
- ➤ At each round, we play a subset of arms which is an independent set of M. We observe the realization of the reward of each arm played (semi-bandit feedback), and collect the sum.

- ► Set *A* of *k* arms, each associated with:
 - An <u>unknown</u> nonnegative reward distribution.
 - ▶ A <u>fixed</u> and <u>known</u> delay $d_i \in \mathbb{N}_{\geq 1}$.
- Nown matroid $\mathcal{M} = (A, \mathcal{I})$ over the ground set of arms (access via independence oracle).
- <u>Unknown</u> time horizon of T rounds.
- ► At each round, we play a subset of arms which is an independent set of M. We observe the realization of the reward of each arm played (semi-bandit feedback), and collect the sum.
- Once an arm i is played, it cannot be played again for the subsequent $d_i 1$ rounds.

- ► Set *A* of *k* arms, each associated with:
 - An <u>unknown</u> nonnegative reward distribution.
 - ▶ A <u>fixed</u> and <u>known</u> delay $d_i \in \mathbb{N}_{\geq 1}$.
- Nown matroid $\mathcal{M} = (A, \mathcal{I})$ over the ground set of arms (access via independence oracle).
- <u>Unknown</u> time horizon of T rounds.
- ► At each round, we play a subset of arms which is an independent set of M. We observe the realization of the reward of each arm played (semi-bandit feedback), and collect the sum.
- Once an arm i is played, it cannot be played again for the subsequent $d_i 1$ rounds.
- ► **Goal:** Maximize the expected reward collected within *T* rounds.

Example: Uniform rank-2 matroid (i.e., play at most 2 arms per round):

Figure: Round 1

Example: Uniform rank-2 matroid (i.e., play at most 2 arms per round):

Figure: Round 2

Example: Uniform rank-2 matroid (i.e., play at most 2 arms per round):

Figure: Round 3 (Idle time)

Example: Uniform rank-2 matroid (i.e., play at most 2 arms per round):

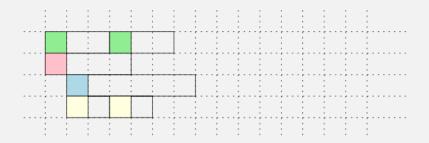


Figure: Round 4

Example: Uniform rank-2 matroid (i.e., play at most 2 arms per round):

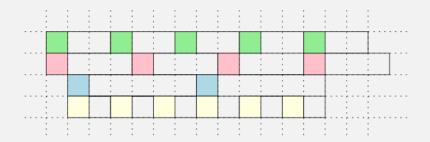


Figure: Round ...

Matroid Blocking Semi-Bandits: Related Work

▶ Rank-1 matroids (i.e., 1 arm per round): \exists (1 − $^{1}/_{e}$)-approximation for <u>deterministic</u> and <u>known</u> rewards.

"Blocking Bandits", [Basu, Sen, Sanghavi & Shakkottai, NeurIPS '19].

Matroid Blocking Semi-Bandits: Related Work

▶ Rank-1 matroids (i.e., 1 arm per round): \exists (1 - $^{1}/_{e}$)-approximation for <u>deterministic</u> and <u>known</u> rewards.

"Blocking Bandits", [Basu, Sen, Sanghavi & Shakkottai, NeurIPS '19].

▶ Delays are all 1 (i.e., arms are never blocked):

"Matroid Bandits: Fast Combinatorial Optimization with Learning", [Kveton, Wen, Ashkan, Eydgahi & Eriksson, AUAI '16].

Matroid Blocking Semi-Bandits: Related Work

▶ Rank-1 matroids (i.e., 1 arm per round): \exists (1 - $^{1}/_{e}$)-approximation for <u>deterministic</u> and <u>known</u> rewards.

"Blocking Bandits", [Basu, Sen, Sanghavi & Shakkottai, NeurIPS '19].

- ▶ Delays are all 1 (i.e., arms are never blocked):
 "Matroid Bandits: Fast Combinatorial Optimization with Learning",
 [Kveton, Wen, Ashkan, Eydgahi & Eriksson, AUAI '16].
- Alternative model favoring non-repetitiveness: Expected reward of an arm is an increasing concave function of the last time it was played.

"Recharging Bandits" [Kleinberg & Immorlica, FOCS '18].

Matroid Blocking Semi-Bandits: Full-Information Setting

Assume for now that the rewards are <u>deterministic</u> and <u>known</u>.

Matroid Blocking Semi-Bandits: Full-Information Setting

- Assume for now that the rewards are <u>deterministic</u> and <u>known</u>.
- ▶ The problem is *strongly* NP-hard, even when all the rewards are 1.

Matroid Blocking Semi-Bandits: Full-Information Setting

- Assume for now that the rewards are <u>deterministic</u> and <u>known</u>.
- ▶ The problem is *strongly* NP-hard, even when all the rewards are 1.
- ► **Greedy approach:** At each round, play the maximum reward independent set among the available (i.e., non-blocked) arms.

- Assume for now that the rewards are <u>deterministic</u> and <u>known</u>.
- ▶ The problem is *strongly* NP-hard, even when all the rewards are 1.
- ► **Greedy approach:** At each round, play the maximum reward independent set among the available (i.e., non-blocked) arms.
- (1-1/e)-approx. for one arm per round [Basu et al., NeurIPS '19].

- Assume for now that the rewards are deterministic and known.
- ▶ The problem is *strongly* NP-hard, even when all the rewards are 1.
- ► **Greedy approach:** At each round, play the maximum reward independent set among the available (i.e., non-blocked) arms.
- (1-1/e)-approx. for one arm per round [Basu et al., NeurIPS '19].
- ▶ ¹/2-approx. for general independence systems (including matroids)
 [Atsidakou et al., ICML '21].

- Assume for now that the rewards are deterministic and known.
- ▶ The problem is *strongly* NP-hard, even when all the rewards are 1.
- Greedy approach: At each round, play the maximum reward independent set among the available (i.e., non-blocked) arms.
- (1-1/e)-approx. for one arm per round [Basu et al., NeurIPS '19].
- ► ¹/2-approx. for general independence systems (including matroids)
 [Atsidakou et al., ICML '21].
- ▶ But the analysis of ¹/2-approximation is **tight** for general matroids.

Can we do better?

Interleaved-Greedy for full-information MBS:

1. Offline: For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].

- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].
- **2. Online:** At every round t = 1, 2, ...:
 - 2.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.

- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].
- **2. Online:** At every round t = 1, 2, ...:
 - 2.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 2.2 Compute a maximum-reward-independent set, A_t , contained in G_t .

- 1. **Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].
- **2. Online:** At every round t = 1, 2, ...:
 - 2.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 2.2 Compute a maximum-reward-independent set, A_t , contained in G_t .
 - 2.3 Play the arms in A_t and collect the rewards.

Theorem

Interleaved-Greedy collects in expectation at least

$$\left(1 - \frac{1}{e}\right) \cdot \textit{OPT}(\textit{T}) - \mathcal{O}\left(\textit{d}_{\mathsf{max}} \cdot \textit{rk}(\mathcal{M})\right),$$

where OPT(T) is the optimal reward for T rounds, d_{max} is the maximum delay of the instance, and $rk(\mathcal{M})$ the rank of the matroid.

Theorem

Interleaved-Greedy collects in expectation at least

$$\left(1 - \frac{1}{e}\right) \cdot \textit{OPT}(\textit{T}) - \mathcal{O}\left(\textit{d}_{\mathsf{max}} \cdot \textit{rk}(\mathcal{M})\right),$$

where OPT(T) is the optimal reward for T rounds, d_{max} is the maximum delay of the instance, and $rk(\mathcal{M})$ the rank of the matroid.

Our proof uses tools from the analysis of submodular functions:

Theorem

Interleaved-Greedy collects in expectation at least

$$\left(1 - \frac{1}{e}\right) \cdot \textit{OPT}(\textit{T}) - \mathcal{O}\left(\textit{d}_{\mathsf{max}} \cdot \textit{rk}(\mathcal{M})\right),$$

where OPT(T) is the optimal reward for T rounds, d_{max} is the maximum delay of the instance, and $rk(\mathcal{M})$ the rank of the matroid.

Our proof uses tools from the analysis of submodular functions:

 Convex relaxation based on the concave closure of submodular functions.

Theorem

Interleaved-Greedy collects in expectation at least

$$\left(1 - \frac{1}{e}\right) \cdot \textit{OPT}(\textit{T}) - \mathcal{O}\left(\textit{d}_{\mathsf{max}} \cdot \textit{rk}(\mathcal{M})\right),$$

where OPT(T) is the optimal reward for T rounds, d_{max} is the maximum delay of the instance, and $rk(\mathcal{M})$ the rank of the matroid.

Our proof uses tools from the analysis of submodular functions:

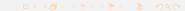
- Convex relaxation based on the concave closure of submodular functions.
- 2. Correlation gap of submodular functions.

▶ In the bandit setting, the reward distributions are initially unknown.

- In the bandit setting, the reward distributions are initially unknown.
- ▶ **Goal:** Minimize the (1 1/e)-approximate regret, defined as:

$$\left(1-{}^{1\!/e}\right)\cdot\mathsf{OPT}(\mathit{T})-\mathbb{E}\left[\mathsf{Reward}\;\mathsf{of}\;\mathsf{Bandit}\;\mathsf{Policy}\right].$$

Equivalently, upper bound the difference between the expected reward collected by Interleaved-Greedy and the bandit policy.



Interleaved-UCB for the bandit setting:

1. Offline: For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].

- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].
- 2. For each arm *i*, maintain a UCB-estimate of its mean reward, based on the observed samples.

- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].
- 2. For each arm *i*, maintain a UCB-estimate of its mean reward, based on the observed samples.
- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.

- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random offset drawn uniformly from [0,1].
- 2. For each arm *i*, maintain a UCB-estimate of its mean reward, based on the observed samples.
- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.

- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random *offset* drawn uniformly from [0,1].
- 2. For each arm *i*, maintain a UCB-estimate of its mean reward, based on the observed samples.
- **3. Online:** At every round $t = 1, 2, \ldots$
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.
 - 3.3 Play the arms in A_t collect the rewards.

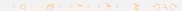
- **1. Offline:** For each arm $i \in A$, let $r_i \sim U[0,1]$ be a random offset drawn uniformly from [0,1].
- 2. For each arm *i*, maintain a UCB-estimate of its mean reward, based on the observed samples.
- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.
 - 3.3 Play the arms in A_t collect the rewards.
 - 3.4 Update the estimates.

- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.
 - 3.3 Play the arms in A_t collect the rewards.
 - 3.4 Update the estimates.

- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.
 - 3.3 Play the arms in A_t collect the rewards.
 - 3.4 Update the estimates.
- ► The sets $\{G_t\}_t$ are independent of the trajectory of the observed rewards.

- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.
 - 3.3 Play the arms in A_t collect the rewards.
 - 3.4 Update the estimates.
- ▶ The sets $\{G_t\}_t$ are independent of the trajectory of the observed rewards.
- The sequence {G_t}_t is identically distributed in Interleaved-Greedy and Interleaved-UCB.

- 3. **Online:** At every round t = 1, 2, ...:
 - 3.1 Let $G_t \subseteq A$ be the subset of arms such that, for any $i \in G_t$, the interval $[t \cdot \frac{1}{d_i} + r_i, (t+1) \cdot \frac{1}{d_i} + r_i)$ contains an integer.
 - 3.2 Compute a maximum-reward-independent set, A_t , contained in G_t , according to the current estimates.
 - 3.3 Play the arms in A_t collect the rewards.
 - 3.4 Update the estimates.
- ▶ The sets $\{G_t\}_t$ are independent of the trajectory of the observed rewards.
- The sequence {G_t}_t is identically distributed in Interleaved-Greedy and Interleaved-UCB.
- **Key-idea**: We can upper-bound the regret "pointwise", assuming that the sequence of sets $\{G_t\}_t$ is the same in both algorithms.



Combining the above idea with (i) the strong basis exchange property of matroids and (ii) standard UCB arguments, we show the following result:

Theorem

The (1-1/e)-approximate regret can be upper-bounded as

$$\mathcal{O}\left(k\sqrt{T\ln(T)}+k^2+d_{\mathsf{max}}\cdot r(\mathcal{M})\right),$$

where k is the number of arms, $r(\mathcal{M})$ is the rank of \mathcal{M} , and d_{max} is the maximum delay of the instance.

Combining the above idea with (i) the strong basis exchange property of matroids and (ii) standard UCB arguments, we show the following result:

Theorem

The (1-1/e)-approximate regret can be upper-bounded as

$$\mathcal{O}\left(k\sqrt{T\ln(T)}+k^2+d_{\mathsf{max}}\cdot r(\mathcal{M})\right),$$

where k is the number of arms, $r(\mathcal{M})$ is the rank of \mathcal{M} , and d_{max} is the maximum delay of the instance.

Almost matching the regret lower bound for standard (non-blocking) matroid bandits.