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Motivating Example: Music Recommendation

▶ Application: Music recommendation platform (Spotify, Soundcloud,
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▶ A set of songs is suggested to a user every day.

▶ Every song is associated with a stochastic reward (e.g., click
probability).

▶ Goal: Maximize the total expected reward collected within T days.
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Motivating Example: Music Recommendation

Diversity within a day (do not suggest very similar songs on the same
day)

▶ d features (e.g., music genres).

▶ Associate each song with a vector in {0, 1}d .
▶ Set the i-th coordinate to 1, if the song belongs to genre i .

▶ Favor diversity: The songs suggested to the user in the same day
must be linearly independent.

▶ Linear independence can be modeled as a matroid!

▶ Recall: A matroid M over a ground set A of elements is defined as
a collection of independent sets I, such that:

1. If S ∈ I and T ⊂ S then T ∈ I.
2. If S ,T ∈ I and |T | < |S |, then ∃e ∈ S such that T + e ∈ I.
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Non-repetitiveness (do not spam the user with the same song again
and again)

▶ Each song i is associated with a delay di .

▶ Avoid spamming: After a song i is suggested, it cannot appear
again for the next di days.

▶ The delay of each song can depend on factors such as popularity,
promotion and more.
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Problem Definition: Matroid Blocking Semi-Bandits

We consider the following variant of multi-armed bandits (MAB):

▶ Set A of k arms, each associated with:
▶ An unknown nonnegative reward distribution.
▶ A fixed and known delay di ∈ N≥1.

▶ Known matroid M = (A, I) over the ground set of arms (access via
independence oracle).

▶ Unknown time horizon of T rounds.

▶ At each round, we play a subset of arms which is an independent set
of M. We observe the realization of the reward of each arm played
(semi-bandit feedback), and collect the sum.

▶ Once an arm i is played, it cannot be played again for the
subsequent di − 1 rounds.

▶ Goal: Maximize the expected reward collected within T rounds.
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Matroid Blocking Semi-Bandits: Related Work

▶ Rank-1 matroids (i.e., 1 arm per round): ∃ (1− 1/e)-approximation
for deterministic and known rewards.

“Blocking Bandits”, [Basu, Sen, Sanghavi & Shakkottai, NeurIPS
’19].

▶ Delays are all 1 (i.e., arms are never blocked):

“Matroid Bandits: Fast Combinatorial Optimization with Learning”,
[Kveton, Wen, Ashkan, Eydgahi & Eriksson, AUAI ’16].

▶ Alternative model favoring non-repetitiveness:

Expected reward of an arm is an increasing concave function of the
last time it was played.

“Recharging Bandits” [Kleinberg & Immorlica, FOCS ’18].
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Matroid Blocking Semi-Bandits: Full-Information Setting

▶ Assume for now that the rewards are deterministic and known.

▶ The problem is strongly NP-hard, even when all the rewards are 1.

▶ Greedy approach: At each round, play the maximum reward
independent set among the available (i.e., non-blocked) arms.

▶ (1− 1/e)-approx. for one arm per round [Basu et al., NeurIPS ’19].

▶ 1/2-approx. for general independence systems (including matroids)
[Atsidakou et al., ICML ’21].

▶ But the analysis of 1/2-approximation is tight for general matroids.

Can we do better?
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Matroid Blocking Semi-Bandits: Full-Information

Interleaved-Greedy for full-information MBS:

1. Offline: For each arm i ∈ A, let ri ∼ U[0, 1] be a random offset
drawn uniformly from [0, 1].

2. Online: At every round t = 1, 2, . . . :

2.1 Let Gt ⊆ A be the subset of arms such that, for any i ∈ Gt , the
interval [t · 1

di
+ ri , (t + 1) · 1

di
+ ri ) contains an integer.

2.2 Compute a maximum-reward-independent set, At , contained in Gt .
2.3 Play the arms in At and collect the rewards.
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Matroid Blocking Semi-Bandits: Full-Information

Theorem
Interleaved-Greedy collects in expectation at least(

1− 1

e

)
· OPT(T )−O (dmax · rk(M)) ,

where OPT(T ) is the optimal reward for T rounds, dmax is the maximum
delay of the instance, and rk(M) the rank of the matroid.

Our proof uses tools from the analysis of submodular functions:

1. Convex relaxation based on the concave closure of submodular
functions.

2. Correlation gap of submodular functions.
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Matroid Blocking Semi-Bandits: Bandit Setting

▶ In the bandit setting, the reward distributions are initially unknown.

▶ Goal: Minimize the (1− 1/e)-approximate regret, defined as:

(1− 1/e) · OPT(T )− E [Reward of Bandit Policy] .

▶ Equivalently, upper bound the difference between the expected
reward collected by Interleaved-Greedy and the bandit policy.
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Interleaved-UCB for the bandit setting:

1. Offline: For each arm i ∈ A, let ri ∼ U[0, 1] be a random offset
drawn uniformly from [0, 1].

2. For each arm i , maintain a UCB-estimate of its mean reward, based
on the observed samples.

3. Online: At every round t = 1, 2, . . . :

3.1 Let Gt ⊆ A be the subset of arms such that, for any i ∈ Gt , the
interval [t · 1

di
+ ri , (t + 1) · 1

di
+ ri ) contains an integer.

3.2 Compute a maximum-reward-independent set, At , contained in Gt ,
according to the current estimates.

3.3 Play the arms in At collect the rewards.
3.4 Update the estimates.
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3.2 Compute a maximum-reward-independent set, At , contained in Gt ,
according to the current estimates.

3.3 Play the arms in At collect the rewards.
3.4 Update the estimates.
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▶ The sets {Gt}t are independent of the trajectory of the observed
rewards.

▶ The sequence {Gt}t is identically distributed in Interleaved-Greedy
and Interleaved-UCB.

▶ Key-idea: We can upper-bound the regret “pointwise”, assuming
that the sequence of sets {Gt}t is the same in both algorithms.
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Combining the above idea with (i) the strong basis exchange property of
matroids and (ii) standard UCB arguments, we show the following result:

Theorem
The (1− 1/e)-approximate regret can be upper-bounded as

O
(
k
√

T ln(T ) + k2 + dmax · r(M)
)
,

where k is the number of arms, r(M) is the rank of M, and dmax is the
maximum delay of the instance.

▶ Almost matching the regret lower bound for standard (non-blocking)
matroid bandits.
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