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Background
Image Memorability (Isola et al., 2011) [']
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Motivation
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Event memorability + Image memorability
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« What factors affect event memorability?
« Can we predict a person’s memory of individual events?

« [Future work] Can we design cognitive intervention programs to enhance
subjects’ episodic memory by leveraging on the knowledge of event
memorability?
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Related works
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Image Memorability
* What makes an [image/object/graph/scene/] memorable? [1-5]
* Video memorability [6,7]

Dataset
* SUN-Mem [1], LaMem [2], FIGRIM [3], Mem-Cat [4], LNSIM [5]

Predictive models
* MemNet [2], AMNet [8], DeepNSM [5], ICNet [9]
Event Memorability

* Neuro-psychological studies [10]: only study memorability of event categories
* Neural imaging [11,12]: intrusive and expensive, difficult to get data
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Our Approach

& % &

/ Test Set (Stimuli)
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* An experiment protocol: lifelogging, systematic training, standardized testing
* A dataset (R3): Sophisticated mechanisms to extract visual semantic features
* A predictive model. compute item-wise event memorability
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* Pilot study (8 young + 5 old); formal study (47 old, reported in this study)
* 1 month lifelog recording from each subject; >13K hours, >1.5M photos with meta-data
* >10K samples of event recall (reported in this study; privacy sensitive information removed)
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Visual Semantic Features in Context

* Intrinsic (pure visual; from image cue)
e Saliency: image memorability, multiple benchmarking models used
* Face: presence of human face
* Human: presence of human body
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e Extrinsic

* Encoding context

® Event distinctiveness: Rare events are remembered better (Hunt and Worthen, 2006); computed
using CES method (del Molino et al., 2018)

® Event boundary condition: Event segmentation theory (Gold et al. 2017)
® Activity: Manually annotated based on local context
® Place: Manually annotated based on local context
* Testing context
® Event distinctiveness: computed based on information-theoretic entropy (Bylinskii et al., 2015)
®* Encode-test interval: time between event occurrence and testing
® Training (treatment): event has been re-consolidated before
* Demographic
* Age
* gender
* Etc.
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Memory Mnemonics

Question 1

Question 2

New Remember
Know

Details

“Remémbef'

Familiarity

“Know”

Certainly not mine|

,
“New”

Perhaps not mine

Q1 Answer

Q2 Answer

Own Photo
I I
Remember Know New

[ [ [
[ | | | |
4 3 2 3 2 Perhaps| | Certain
W \ W \ y
10 9 8 5 4 2 1

(b) Encode test outcome as 10-level graded memory types
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Linear regression analysis

Hypothesis: event memorability is dependent on both intrinsic and

extrinsic features

* Intrinsic feature (i.e., image memorability) predicts event memory to vary extends

based on different predictive models.
» MemNet [28]: r=0.02, p =0.04,
= DeepNSM [33]: r=0.01, p = 0.54
=  AMNet [15]: r=0.19, p < 0.001

« Linear mixed-effect analysis: features are used as fixed effects and “subject”

modelled as a random effect.

Intrinsic Factors  ¢-statistics | Encoding Context ¢-statistics |  Testing Context  ¢-statistics
Image memorability 11.14 Encode distinctiveness ~ 7.45 Test distinctiveness  3.93
Presence of faces  10.55 Boundary condition -0.73 Treatment 10.00
Presence of human  2.08 Activities 7.34 Interval -14.22
Places 1.38

Table 1: Factors that affects event memorability. ¢-value in bold font means the factor significantly

correlated with memory (p < 0.05).
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CEMNet - Predicting item-wise event memory

Contextual Information <MLP>
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Code available @ https://github.com/ffzzy840304/Predicting-Event-Memorability



https://github.com/ffzzy840304/Predicting-Event-Memorability
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Experiment results

Method Input Features | Precision] Recallt F17 Mean error)
AMNet [8] Image 0.171 0.179 0.150 3.03
ICNet[9] Image 0.153 0.155 0.140 3.11
MLP Extrinsic Features* 0.389 0.385 0.333 091
CEMNet w/t AMNet | Intrinsic + Extrinsic 0.408 0.414 0.368 0.85
CEMNet w/t ICNet Intrinsic + Extrinsic 0.369 0.340 0.340 0.97

Table 2: Comparing performance of models. *Intrinsic features, i.e., human face & body, are included.

Intrinsic features (i.e., using only image cues) have limited predictive power; above

chance dCcuracy.

Extrinsic features (MLP model) can predict event memorability with considerable

dCcuracy.

Combining intrinsic and extrinsic gives best prediction outcome; Especially using more

comprehensive DCNN model (e.g., AMNet)



Ablation Study - which feature has higher predictive value?
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0.30
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Feature Removed

Using all features generally gives better performance
Most features are conducive to the performance, except “human” and “interval”

Some factors co-vary with each other, which may have caused inconsistent
outcome. No causal relationship is established. 2



Summary
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- Event memory can be effectively predicted with intrinsic +
extrinsic factors

- Extrinsic factors are more important in event memory prediction

- R3 experiment and dataset may inspire new experiments to
investigate on event memory

- We can leverage on the outcome of predicted event memory to
design memory intervention programs
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