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Background

Image source [1]

“Memorable”

“Forgettable"

Image Memorability (Isola et al., 2011) [1]

Image source [8]
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Motivation
Event Memorability

• What factors affect event memorability?
• Can we predict a person’s memory of individual events?
• [Future work] Can we design cognitive intervention programs to enhance 

subjects’ episodic memory by leveraging on the knowledge of event 
memorability?

Event memorability ≠ Image memorability
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Related works 

• Image Memorability
• What makes an [image/object/graph/scene/] memorable? [1-5]
• Video memorability [6,7]

• Dataset
• SUN-Mem [1], LaMem [2], FIGRIM [3], Mem-Cat [4], LNSIM [5]

• Predictive models
• MemNet [2], AMNet [8], DeepNSM [5], ICNet [9]

• Event Memorability
• Neuro-psychological studies [10]: only study memorability of event categories
• Neural imaging [11,12]: intrusive and expensive, difficult to get data 
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Our Approach

• An experiment protocol: lifelogging, systematic training, standardized testing
• A dataset (R3): Sophisticated mechanisms to extract visual semantic features
• A predictive model: compute item-wise event memorability
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Experiment design and dataset

• Pilot study (8 young + 5 old); formal study (47 old, reported in this study)

• 1 month lifelog recording from each subject; >13K hours, >1.5M photos with meta-data 

• >10K samples of event recall (reported in this study; privacy sensitive information removed)

R3 

14 days Recording 3 days Test 1 14 days Recording 3 days Test 2 7 wks Test 3

Phase I Phase II Phase III

3 s

Memory Type

- Remember
- Know
- New

Memory Level

- R:  1  2  3  4
- K:   1  2  3  4 
- N: perhaps vs. certain

3 s

8 s
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Visual Semantic Features in Context
• Intrinsic (pure visual; from image cue)

• Saliency: image memorability, multiple benchmarking models used
• Face: presence of human face
• Human: presence of human body

• Extrinsic
• Encoding context

• Event distinctiveness: Rare events are remembered better (Hunt and Worthen, 2006); computed 
using CES method (del Molino et al., 2018)

• Event boundary condition: Event segmentation theory (Gold et al. 2017)
• Activity: Manually annotated based on local context
• Place: Manually annotated based on local context 

• Testing context
• Event distinctiveness: computed based on information-theoretic entropy (Bylinskii et al., 2015)
• Encode-test interval: time between event occurrence and testing
• Training (treatment): event has been re-consolidated before

• Demographic 
• Age
• gender
• Etc.
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Memory Mnemonics 
3s

Q1: Memory Type

- Remember (R)
- Know (K)
- New (N)

Q2: Memory Level

- R: 1  2  3  4
- K: 1  2  3  4 
- N: Perhaps - Certain

8s 3s

Own Photo

Remember Know New

4

Q1 Answer 

Q2 Answer 3 2 1 4 3 2 1 Perhaps Certain

Many Few High  Low Not Confident

(a) Procedure of memory test

(b) Encode test outcome as 10-level graded memory types 

10 9 8 7 6 5 4 3 2 1
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Linear regression analysis
Hypothesis: event memorability is dependent on both intrinsic and 
extrinsic features 
• Intrinsic feature (i.e., image memorability) predicts event memory to vary extends 

based on different predictive models. 
§ MemNet [28]: r = 0.02, p = 0.04, 
§ DeepNSM [33]: r = 0.01, p = 0.54 
§ AMNet [15]: r = 0.19, p < 0.001 

• Linear mixed-effect analysis: features are used as fixed effects and “subject” 
modelled as a random effect.

10
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CEMNet – Predicting item-wise event memory
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Code available @ h-ps://github.com/ffzzy840304/PredicAng-Event-Memorability

Pipeline 1

Pipeline 2

Pipeline AMNet ICNet MLP CEMNet wt
AMNet

CEMNet wt
ICNet

1 - - MLP MLP MLP
2 AMNet[8] ICNet[9] - AMNet ICNet

https://github.com/ffzzy840304/Predicting-Event-Memorability
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Experiment results

• Intrinsic features (i.e., using only image cues) have limited predictive power; above 
chance accuracy.

• Extrinsic features (MLP model) can predict event memorability with considerable 
accuracy.

• Combining intrinsic and extrinsic gives best prediction outcome; Especially using more 
comprehensive DCNN model (e.g., AMNet)

[8]
[9]
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Ablation Study – which feature has higher predictive value?

• Using all features generally gives better performance
• Most features are conducive to the performance, except “human” and “interval”
• Some factors co-vary with each other, which may have caused inconsistent 

outcome. No causal relationship is established.
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Summary 

• Event memory can be effectively predicted with intrinsic + 
extrinsic factors

• Extrinsic factors are more important in event memory prediction

• R3 experiment and dataset may inspire new experiments to 
investigate on event memory 

• We can leverage on the outcome of predicted event memory to 
design memory intervention programs
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