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Learning in high dimensions

Supervised learning: learn a target function  from  observations

 

How many observations? If one only assumes   is Lipschitz continuous, one

needs  observations to learn  up to error : curse of dimensionality

     

f (x)∗ P

{(x , y )}μ μ
μ=1
P

x ∈μ R , y =d μ f (x )∗ μ

f ∗

O(ϵ )−d f ∗ ϵ

ϵ = O(P )−1/d

Learning seems impossibile!
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Learning in high dimensions

How many observations in practice? For ResNets on ImageNet ( )    

  [Hestness 1712.00409]

       

d = 6.2 × 104

ϵ ∼ P−0.3
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Images are physically structured

If deep learning works in high dimensions, data must be very structured

Several ideas:

Data live on a manifold  of lower dimensionality 

Presence of invariants, as shift-invariance or deformation stability

The task is local and compositional  

M d ≪M d

Does a local compositional structure affect the
learning curve?

 [Poggio 1611.00740, 2006.13915] [Bietti 2102.10032]
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Good architectures have good priors

Convolutional neural networks have shared filter weights with local support

Numerical experiments suggest that local connectivity is key to
performance [Neyshabur 2007.13657]

Can we quantify the respective advantages of
weight sharing and local connectivity?
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Learning scenario: the teacher

Inputs are -dimensional random sequences

 

d

x = (x , ..., , ...,x )1

xi

x , ...,xi i+t−1 d

-dimensional patcht

The target function is either

local   ,   e.g.  

or convolutional  

f =∗LC g (x )
i=1

∑
d

i i f (x ,x ,x ) =∗LC
1 2 3 g (x ,x ) +1 1 2 g (x ,x ) +2 2 3 g (x ,x )3 3 1

f =∗CN g(x )
i=1

∑
d

i

 is a Gaussian random function with controlled smoothness g :i R →t R αt
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Learning scenario: the student

Kernel method with a local or convolutional kernel with -dimensional patches

and smoothness  learns from  examples

 

 

      

s

αs P

K (x,x ) =LC ′ C(x ,x )
d

1
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∑
d

i i
′
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Learning scenario: the student

Kernel method with a local or convolutional kernel with -dimensional patches
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Learning scenario: the student

Kernel method with a local or convolutional kernel with -dimensional patches

and smoothness  learns from  examples

 

 

      

s

αs P

Generalization error ϵ = E [(f(x) −x,f∗ f (x)) ] ∼∗ 2 P−β

K (x,x ) =LC ′ C(x ,x )
d

1

i=1

∑
d

i i
′ K (x,x ) =CN ′ C(x ,x )

d2
1

i,j=1

∑
d

i j
′

Including the kernels of simple CNNs as special cases! [ Jacot 1806.07572]
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Generalization in kernel regression

Mercer's theorem:  spectral decomposition K(x,x ) =′ λ ϕ (x)ϕ (x )∑ρ ρ ρ ρ
′

We can expand  in the (student) kernel basis: f ∗ f (x) =∗ c ϕ (x)∑ρ ρ ρ

From statistical physics, kernel regression learns the first  projections

[Bordelon 2002.02561] [Spigler 1905.10843] 

 

P

ϵ(P ) ∼ E[c ]
ρ>P

∑ ρ
∗2
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 conv./loc. with -dimensional constituents, , and smoothness 

with 

 

KS s s ≥ t αs

α ≥s α /2 −t s

ϵ(P ) ∼ P−α /st

ϵ(P ) ∼ (
d

P )
−α /st

Asymptotic learning curves

 conv. with -dimensional constituents (filter size) and smoothness KT t αt

conv. student

loc. student
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KS s s ≥ t αs

α ≥s α /2 −t s

ϵ(P ) ∼ P−α /st

ϵ(P ) ∼ (
d

P )
−α /st

Asymptotic learning curves

 conv. with -dimensional constituents (filter size) and smoothness KT t αt

Locality changes the error's decay

conv. student

loc. student

The exponent is independent of : no curse of dimensionality!d

Shift-invariance just affects the prefactor
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Asymptotic learning curves

These predictions are confirmed numerically for several kernels and data

distributions
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Conclusions and perspectives

Local kernels beat the curse of dimensionality when learning local functions

This effect can be appreciated for real data also, e.g. regression on CIFAR-10

What's missing? Exploring the benefits of depth by considering more complex

compositional tasks as hierarchical target functions
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