Locality defeats the curse of
dimensionality in convolutional
teacher-student scenarios

Alessandro Favero, Francesco Cagnetta, Matthieu Wyart

I NEURAL INFORMATION
PROCESSING SYSTEMS



Learning in high dimensions

e Supervised learning: learn a target function f*(a) from P observations

{(@", ")}

z' e RY,  y' = f(x")

e How many observations? If one only assumes f* is Lipschitz continuous, one

needs O(e~?) observations to learn f* up to error ¢: curse of dimensionality

e =O(P 1)

Learning seems impossibile!



Learning in high dimensions

e How many observations in practice? For ResNets on ImageNet (d = 6.2 x 10%)
e ~ P93 [Hestness 1712.00409]
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Images are physically structured

e |f deep learning works in high dimensions, data must be very structured

e Several ideas:

= Data live on a manifold M of lower dimensionality dy < d
= Presence of invariants, as shift-invariance or deformation stability
= The task is local and compositional

[Poggio 1611.00740, 2006.13915] [Bietti 2102.10032]

Does a local compositional structure affect the
learning curve?




Good architectures have good priors

e Convolutional neural networks have shared filter weights with local support

—

e Numerical experiments suggest that local connectivity is key to
performance [Neyshabur 2007.13657]

Can we quantify the respective advantages of
weight sharing and local connectivity?



Learning scenario: the teacher

e Inputs are d-dimensional random sequences

L = (5131, coey Ljg ey Ljtt—T14 eeey :vd)

€i t-dimensional patch

e The target function is either

d
= local f*C = Zg’i(mi)' e.g. fC(z1,z2,z3) = gi(z1, T2) + g2(22, 3) + g3(23, 71)
i=1

d
= or convolutional f*°V = Zg(wz‘)
=1

g; : R® — R is a Gaussian random function with controlled smoothness «a;



Learning scenario: the student

e Kernel method with a local or convolutional kernel with s-dimensional patches
and smoothness «a, learns from P examples

d
K (z,2') = é Z C(x;, x))

1=1



Learning scenario: the student

e Kernel method with a local or convolutional kernel with s-dimensional patches
and smoothness «a, learns from P examples
d |
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Learning scenario: the student

e Kernel method with a local or convolutional kernel with s-dimensional patches

and smoothness «a, learns from P examples

d d
1

2 :C i, ;) KN (z,2') = P2 E C(z;, )

1=1

1,7=1
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e |ncluding the kernels of simple CNNs as special cases! [Jacot 1806.07572]

e Generalization error ¢ = E, -[(f(z) — f*(z))?] ~ P~°



Generalization in kernel regression

* Mercer's theorem: spectral decomposition K (z,z') = > A,¢,(x)¢, (')
e We can expand f* in the (student) kernel basis: f*(z) = >, c,¢,(x)

e From statistical physics, kernel regression learns the first P projections
[Bordelon 2002.02561] [Spigler 1905.10843]

e(P) ~ ) Elc;’]

p>P



Asymptotic learning curves

e K conv. with t-dimensional constituents (filter size) and smoothness o;

e K¢ conv./loc. with s-dimensional constituents, s > t, and smoothness o,
with ay, > /2 — s

conv. student  €(FP)~P el

P —ay /s
oc. student €F) ~ (d)
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Asymptotic learning curves

e K conv. with t-dimensional constituents (filter size) and smoothness o;
e K¢ conv./loc. with s-dimensional constituents, s > t, and smoothness o,
with ay, > /2 — s

conv. student  €(FP)~P L

P —ay/s
oc. student €F) ~ (d)

e The exponent is independent of d: no curse of dimensionality!

e Locality changes the error's decay

e Shift-invariance just affects the prefactor
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g(P)

Asymptotic learning curves

These predictions are confirmed numerically for several kernels and data

distributions
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T: Conv. (t = 3),

S: Conv. (s)
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T: Conv. (t=3),

S: Loc. (s)
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Conclusions and perspectives

e Local kernels beat the curse of dimensionality when learning local functions

e This effect can be appreciated for real data also, e.g. regression on CIFAR-10

e What's missing? Exploring the benefits of depth by considering more complex
compositional tasks as hierarchical target functions
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