=y

COMPACTER: Ttz
Efficient Low-Rank Hypercomplex Adapter Layers

Rabeeh Karimi Mahabadil* 2 James Henderson? Sebastian Ruder®

LEPFL University, 2ldiap Research Institute, 3DeepMind

@ Fine-tuning large-scale pretrained language models with millions
and billions of parameters on downstream tasks is:

o Sample-inefficient
o Unstable in low-resource settings
e Requires storing a separate copy of the model for each task

Fine-tuned Large-scale
Pretrained Language models

Downstream Tasks % % %

2/26

Contributions

o We propose COMPACTER 4

o A parameter-efficient fine-tuning method
o With a better trade-off between task performance, memory and training time

@ Benchmark recent parameter-efficient methods
e Provide insights on their performance and efficiency

Background: Adapters

@ Freeze the model
@ Train adapters and layernorms [1]

Layer norm

Adapter
Feed forward

Multi-head attention

Transformer Layer

Figure: Adapter integration in a pretrained transformer model.

Background: Adapters

@ A bottleneck architecture
@ Consisting of a down projection, non-linearity, and up projection

0000000

Feed forward

up projection
Nonlinearity

Feed forward down

projection

0000000

Adapter Layer

Figure: Adapter architecture.

Compact and Efficient Adapter Layers

@ Down and Up projections in adapters (W eR¥*9) are fully connected layers:
Y=Wx+b

0000000

Feed forward
up projection
[o)eX¢)

Nonlinearity

Feed forward down
projection

0000000

Adapter Layer

Figure: Adapters’ weights.

6/26

Compact and Efficient Adapter Layers

@ W can be learned via parameterized hypercomplex multiplication (PHM)
layers [2].
o Let WeRkxd
e Assume k and d are divisible by a user-defined hyper-parameter neZ-g
o W is generated by a summation of Kronecker products between A;eR"*"

d

and B;eR*%
W:ZA,@Bh
i=1

@ Reduces trainable parameters by %

Size of W
Parameters for W Number of parameters
HeHH+HE® -
Ay A,
B Bz Parameters of W
w

Figure: Parameterized Hypercomplex Multiplication Layers.

Compacter Beyond Hypercomplex Adapters

@ COMPACTER is motivated by the followings:

o There are redundancies in information captured by adapters [1].
o Sharing adapters across layers can cause a small drop in performance [3].

Compacter%”f%: Beyond Hypercomplex Adapters

@ Each COMPACTER layer's weight consists of:
o Shared Weights (A;):

o Common across all adapter layers
o Capturing useful information for adapting to the target task

o Low-rank Weights (B;):
o Adapter-specific parameters
o Capturing information relevant for adapting each individual layer

@ Low-rank parameterized hypercomplex multiplication layers (LPHM):

W = Zn:A,'@B,' = Zn:A,'@(Sit,T).

i=1 i=1

@ We compute sum of Kronecker products of shared matrices A; and
adapter-specific matrices B,J.

COMPACTER layer 1
l Size of Wy
A A0 +—
A 1 A
B% Bz
Independent rank Shared Independent rank Shared
one weights weight A; OD€ weights weight Ay
2 2
Bl B2
‘ Y
—>®—> + —
T Size of Wo
COMPACTER layer 2

10/26

¢ >
COMPACTER Wl

o “Fast” weights B;:
e Independent rank-one weights
o Learns adapter-layer specific information

Weights for COMPACTER Layer 1

~

Size of Wy
l
HHE—] +—
A 1
B B}
Independent rank Shared Independent rank Shared) .
one weights aneight A, one weights weight Ay COMPACTER's weights
2
BY Bg
Y
— Size of Wy

Weights for COMPACTER Layer 2

11/26

¢ >
COMPACTER Wl

@ “Slow" shared weights A;:
e Shared across all COMPACTER layers
o Capture general information useful for adapting to the target task

Independent rank one weights Independent rank one weights .
Size of Wy
e =
H —(X) I > + —>
A 1 A
Bl Bl
Shared EH Shared o
Hweight Ay weight Ay COMPACTER's weights
B} B2
) A]
—) > + —»
Size of Wy

12/26

=

2
COMPACTER Wl

o Parameter size of COMPACTER weights is much smaller than the size
of the weights.

Size of W

H I +

Bl B Parameter size of Wy
Shared

Independent rank Shared Independent rank i COMPACTER's weights E

one weights weight A; ~ On€ weights weight Ay
5 2 Shared parameters size
By By

H H + T —I

EEEE EEEE T Size of W3 _ Parameter size of Wy /

13/26

Parameter Efficiency

For a transformer of L layers and adapters of size k x d:
@ ADAPTER parameters:
o 2kd parameters for down and up projections (encoder/decoder): 4kd
o Total parameters’ complexity: O(Lkd)
o PHM-ADAPTER

e A;eR"™" and B,'ER% x5 define the degree of freedom for W
o Total adapters’ parameters: 4L x (% +n3)
o With a mild assumption kd > n*: O(% Lkd)

o COMPACTER 4=
A;eR™" for all layers: n
Two rank-one weights for each adapter: 4L(k+d)
Total parameters: 4L(k+d)+n?

With a mild assumption 4L(k+d)>n* O(L(k+d))

3

14 /26

Benchmarking Parameter-efficient Methods

Our Proposed Methods:

o Compacter: We learn adapter weights using LPHM layers.

o Compacter++: Removing COMPACTER layers after the self-attention layer.

e PHM-Adapter: We learn adapters’ weight using PHM layers [2].
Baselines:

@ T5gase: Fine-tuning all parameters of Thgase [4]

e Adapter: Including adapters after feedforward and self-attention [1]

o Pfeiffer-Adapter: Including adapters only after self-attention [5]

@ AdapterDrop: Dropping adapters from lower transformer layers
(first 5 layers) [3]

o Adapter-LowRank: Adapter's weights parameterized as a product of
two rank-one weights.

e BitFit: Fine-tuning only biases [6, 7].

15 /26

nchmarking Parameter-efficient Methods

o Intrinsic-SAID: reparameterize in a low-dimensional subspace 8" (d’ « D)

[8]:

0P =05+ Po ™,

o Parameter 0,-‘70 are the pretrained model's parameters
)

o PcRY~™_RP is a random linear projection via the Fastfood transform
o The total trainable parameters are 84 ~™eRY ™ and AeR™

@ Prompt Tuning: Prepends a randomly initialized continuous prompt to
the input [9)].
o Initializing prompts from pretrained language model's vocabulary

[Prompt A]—)[Inputs A]_I_)(
[Prompt B]—)[Inputs B]—) Pretrained Language models
[Prompt C]—)[Inputs C]—I_)k

16 /26

Task-specific Prompts

Trade-off Between Parameter Efficient Fine-tuning Methods

o Trade-off between quantitative performance (score on GLUE (y axis))
@ Percentage of trained parameters (x axis, in log scale)
@ Memory footprint (size of the circles).

88

C{)mpac er !
PHM-Adapter
Compaoterr &: D feiffer-Adapter @
86 - - -
Adapter-! ank dapter s
AdapterDri

Intrinsic-SAID O

o4 BitFit

GLUE Score
8

@
S

78

PromptTuning
76

0.01 0.10 1.00 10.00 100.00
Percentage of the Trained Parameters Per Task (Relative to T5)

17/26

mance Evaluation: COMPACTER, (++)

@ Performs on par with full fine-tuning.
@ Outperforms all previous parameter-efficient methods.
@ Only trains 0.07% (0.047%) of parameters.

@ Reduces memory usage and speeds up the training.

Trained Memory Time/

Model params/ Avg A% Epoch A%
(MB) N

per task (min)
T5ease 100% 86.5 167.99 — 42.13 =
ADAPTER 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
ADAPTERDROP 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
ADAPTER-LOWRANK 0.073% 85.82 123.8 -35.69% 3271 -22.36%
PrompT TUNING 0.034% 75.95 22227 24.42% 4454 5.72%
INTRINSIC-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BirFiT 0.126% 8497 102.31 -64.20% 27.36 -35.06%
PHM-ADAPTER 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
COMPACTER 0.073% 86.62 12391 -35.57% 36.48 -13.41%
COMPACTER++ 0.047% 86.47 11835 -41.94% 3096 -26.51%

18/26

Performance Evaluation: PROMPT TUNING

@ Low number of parameters but high memory overhead and slow to train
o Computation of self-attention scales quadratically with the sequence length
@ Its performance substantially lags behind full fine-tuning

o High sensitivity to initialization and learning rate
o Limited interaction with the model
o Less suitable to deal with large contexts

Trained Memory Time/
Model params/ Avg (MB) A% Epoch A%

per task (min)
T5gase 100% 86.5 167.99 — 4213 —
ADAPTER 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
ADAPTERDROP 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
ADAPTER-LOWRANK 0.073% 85.82 123.8 -35.69% 32.71 -22.36%
PrompPT TUNING 0.034% 75.95 22227 24.42% 4454 572%
INTRINSIC-SAID 0.009% 85.45 285.40 41.14% 14401 241.82%
BiTFIT 0.126% 84.97 10231 -64.20% 27.36 -35.06%
PHM-ADAPTER 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
COMPACTER 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
COMPACTER++ 0.047% 86.47 118.35 -41.94% 3096 -26.51%

19/26

Performance Evaluation: INTRINSIC-SAID

@ Tunes only 0.009% of parameters

@ Performs worse than fine-tuning
@ High memory overhead and slow to train

o Requires storing large random projection matrices.
o Computing projections via FastFood transform [10] is slow in practice
o Not suitable for large-scale pretrained language models

Trained Memory Time/

Model params/ Avg A% Epoch A%
(MB) N

per task (min)
T5ease 100% 86.5 167.99 = 42.13 =
ADAPTER 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
ADAPTERDROP 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
ADAPTER-LOWRANK 0.073% 85.82 123.8 -35.69% 3271 -22.36%
PrompT TUNING 0.034% 75.95 22227 24.42% 4454 5.72%
INTRINSIC-SATID 0.009% 85.45 285.40 41.14% 144.01 241.82%
BirFiT 0.126% 84.97 10231 -64.20% 27.36 -35.06%
PHM-ADAPTER 0.179% 86.40 123.93 -35.55% 35.55 -15.62%
COMPACTER 0.073% 86.62 123.91 -35.57% 36.48 -13.41%
COMPACTER++ 0.047% 86.47 118.35 -41.94% 3096 -26.51%

20/26

Performance Evaluation: BITF1T

@ Performs worse than fine-tuning (-1.53 points).
o Tuning only biases is not sufficient

@ Lowest memory overhead and the fastest to train
e Does not store intermediate activations.

Trained Memory Time/

Model params/ Avg A% Epoch A%
(MB) N

per task (min)
T5gase 100% 86.5 167.99 — 42.13 —
ADAPTER 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER ~ 0.427% 86.32 118.4 -41.88% 28.19 -33.09%
ADAPTERDROP 0.494% 85.85 119.41 -40.68% 28.08 -33.35%
ADAPTER-LOWRANK 0.073% 85.82 123.8 -35.69% 3271 -22.36%
PrompT TUNING 0.034% 75.95 22227 24.42% 4454 5.72%
INTRINSIC-SAID 0.009% 85.45 285.40 41.14% 14401 241.82%
BrrFir 0.126% 84.97 102.31 -64.20% 27.36 -35.06%
PHM-ADAPTER 0.179% 86.40 123.93 -35.55% 3555 -15.62%
COMPACTER 0.073% 86.62 123.91 -3557% 36.48 -13.41%
COMPACTER++ 0.047% 86.47 11835 -41.94% 3096 -2651%

21/26

Performance Evaluation: ADAPTER-based methods

@ Low memory-overhead and fast to train

@ Generally perform worse than finetuning (exception:PFEIFFER-ADAPTER)
e ADAPTERDROP: Adapting lower layer of T5 is important.
o ADAPTER-LOWRANK is not expressive enough.

@ Order of magnitude more trainable parameters cf. COMPACTER++

Trained Memory Time/

Model params/ Avg (MB) A% Epoch A%

per task (min)

T5gase 100% 86.5 167.99 — 42.13 =
ADAPTER 0.832% 85.78 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER 0.427% 86.32 1184 -41.88% 28.19 -33.09%

ADAPTERDROP 0.494% 85.85 119.41 -40.68% 28.08 -33.35%

ADAPTER-LOWRANK 0.073% 85.82 123.8 -35.69% 3271 -22.36%

PrompPT TUNING 0.034% 75.95 22227 24.42% 4454 5.72%

INTRINSIC-SAID 0.009% 85.45 285.40 41.14% 144.01 241.82%

BirFiT 0.126% 84.97 102.31 -64.20% 27.36 -35.06%

PHM-ADAPTER 0.179% 86.40 123.93 -35.55% 35.55 -15.62%

COMPACTER 0.073% 86.62 12391 -35.57% 36.48 -13.41%
COMPACTER++ 0.047% 86.47 118.35 -41.94% 30.96 -26.51%

22/26

Low-resource Fine-tuning

@ Subsampling GLUE for varying sizes (100,500,1000,2000,4000).
o COMPACTER++:

o Generalizes substantially better in resource-limited settings.
o Offers a more effective fine-tuning in this regime.

5

- 84 1

O

§ 821

[72]

L

§ 80 1

)

s 781 —I— TSpase

[}

> —+— Compacter,
< 76 A T T T T T

0 1000 2000 3000 4000
Samples per task

Figure: Results on GLUE for low-resource setting.

23/26

Takeaways

COMPACTER (++)

¢ VR
@ Is a light-weight fine-tuning method for large-scale language models.
@ Generates adapter’s weights by summing Kronecker products between:

o shared “slow” weights
e ‘“fast” rank-one matrices, specific to each adapter layer.

Reduces the number of parameters substantially from O(kd) to O(k+d).
Learns only 0.073% (0.047%) parameters, still:

e Obtains comparable performance in a full-data setting.
e Outperforms fine-tuning in data-limited scenarios.

Please join our poster presentation during NeurlPS, 2021.

24/26

References |

[1] Neil Houlsby, Andrei Giurgiu,
Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In ICML, 2019.
[2] Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan,
Anh Tuan Luu, Siu Hui, and Jie Fu. Beyond fully-connected layers with quaternions:
Parameterization of hypercomplex multiplications with 1/n parameters. In ICLR, 2021.
[3] Andreas Riicklé, Gregor Geigle, Max
Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. AdapterDrop:
On the Efficiency of Adapters in Transformers. arXiv preprint arXiv:2010.11918, 2020.

[4] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. JMLR, 2020.

[5] Jonas Pfeiffer, Aishwarya Kamath, Andreas Riickle, Cho Kyunghyun, and Iryna Gurevych.
AdapterFusion: Non-destructive task composition for transfer learning. In EACL, 2021.

[6] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.
Tinytl: Reduce memory, not parameters for efficient on-device learning. NeurlPS, 2020.

[7] Shauli Ravfogel, Elad Ben-Zaken, and Yoav Goldberg. Bitfit: Simple
parameter-efficient fine-tuning for transformer-based masked languagemodels. 2021.

25 /26

References Il

[8] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains
the effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

[9] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021.
[10] Quoc Le, Tam3s Sarlés, and
Alex Smola. Fastfood-approximating kernel expansions in loglinear time. In ICML, 2013.
[11] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q
Weinberger, and Yoav Artzi. Revisiting Few-sample BERT Fine-tuning. In /CLR, 2021.

[12] Hyung Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, and Sebastian
Ruder. Rethinking Embedding Coupling in Pre-trained Language Models. In ICLR, 2021.

26 /26

	Experimental Results
	References

