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> Previous studies of explaining adversarial robustness

Previous explanations lack an essential and unified explanation.

 + Explanations for adversarial examples

e Linearity of feature representations

What is the essence of * Non-robust yet discriminative features
dversarial attacks and < . : ..

o sa?a L e Understandings of adversarial training

defenser * Learning more shape-biased features

 Enumeration of potential adversarial

perturbations

How to explain

adversarial robustness e Understanding of the robustness
from the perspective of * Proving the theoretical bounds

feature representation?




> Contributions of this paper

» \We discover that adversarial attacks mainly affect high-order
interactions between input variables.

e Adversarial training boosts the robustness of DNNs by learning more
discriminative low-order interactions.

 We proposed a unified explanation for several adversarial defense
methods.

"



> Shapley values: the importance of input variables

Game
* Inputvariables N = {1,2, ...,n} -> players
» Scalar network output v(N) -> total reward

Given input variables S € N,

g = m@ v(S)

» Shapley value is considered as a method that fairly allocates the reward to
players!i-2],

{n— |S| = DI}
n!

(i) = lwlS uld) — v(5)]

SCN\{i}

[1] Lloyd S:Shapley. “A value for n-person games”. In: Contributions to the Theory of Games 2.28 (1953), pp. 307-317.
[2] Scott M. Lundberg, and:Su-In Lee, “A unified approach tointerpreting:model predictions”:in NeurlPS 2017;




> Game-theoretic interactions

e Different pixels cooperate with each other for inference, rather than work

individually.
» Shapley Interaction index!®! between two input variables (i, j): the change of the

importance (Shapley value) of i when j is present, w.r.t. the importance when j is
absent.

1G,)) = wy j (D) = Pwyo j() = Esemg3[Av(L ), 5)] .

.

Shapley value of i when j is present

Shapley value of i when j is absent

where Avli 5) —p(SULL D - b(SULI) - BISUL) F D(5)



Game-theoretic multi-order interactions to represent the
> complexity of representations

e Qur team further define interactions of different orders as follows!?.

1
Ii(}”) = Esem(ijyisi=mAv(, j, S)], 1(i,)) = - Il_(jm)

m=0

Il.(j ) measures the average interaction between variables (i,j) under all contexts
consisting of m variables.
Normal Low-order High-order
input image interactions interactions

Low order m: simple contextual
collaborations with a few variable >
represent simple concepts

High order m: complex contextual
collaborations with massive variables -
represent complex concepts




> Game-theoretic multi-order interactions: properties

Properties of multi-order interactions

e Linearity property: If VS € N, u(S) = v(S) + w(S), then Il(tm)(i,j) = Il.(;’r;) + 1572

«  Dummy property: If VS € N\{i},v(S U {i}) = v(S) + v({i}), then Vj € N\{i}, 1’ = 0
e Symmetry property: If VS € N\{i, j},v(S U {i}) = v(S U {j}), then Yk € N\{i,}, Il.(?) =
(m)
L
e  Commutativity property: Vi = j € N 1™ = Ij(im)

) lj
« Efficiency property: v(N) — v(0) = X;enlvi}) — v(D)] + Zi,jEN’iij[Z%fO%]gn)]

* Accumulation property: ¢(i|N) = Ep, Ejen iy [Ii(]m] + v({i}) — v(®)
«  Marginal contribution property: Vi # j € N, ¢ ™+ (i) — pM) (i) = Ejen\iiy [Ii(}n)]




> Game-theoretic multi-order interactions: efficiency property

 Efficiency property of the multi-order interaction:

Fle

—1-m
- (0) (m) iy It (m)
v(N) = v(0) +Z¢ @+ Z _Zfij . -
LEN LLJEN,1#] m=0
d Q) = v({i}) — v(0) utility of multi-order interactions

Effects of a single variable to the model output




> Contributions of this paper

» \We discover that adversarial attacks mainly affect high-order
interactions between input variables.

 Adversarial training boosts the robustness of DNNs by learning more
discriminative low-order interactions.

« We proposed a unified explanation for several adversarial defense
methods.




> Attacks mainly affect high-order interactions

Given the normal sample x, let X = x + 6 denote the adversarial example.

Decompose the total adversarial utility of perturbations into attacking utilities
on different interactions of different orders:

n—2
Mv(N|x) = v (N1 = vV = Y AgQGIND+ > N,

IEN l [,JEN,i#] m=0
Small and can be ignored

n—1—-m

(m) (m) (m) _ ;(m) (m) r~
A]ij —WAIU , AIU _Iij (x)_lij (X) ‘



> Attacks mainly affect high-order interactions
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We discover that adversarial attacks mainly affect high-order
interactions between input variables.




> Attacks mainly affect high-order interactions

Theoretic explanation of the sensitivity of high-order interactions:

Proposition 1 (equivalence between the multi-order interaction and the mutual
information):

Iz'(;n) = Escn\{i,5},151=m MI(X;; X;; Y | Xs)

high-order conditioned on suffering more from
interactions larger contexts S adversarial perturbations.




> Contributions of this paper

e We discover that adversarial attacks mainly affect high-order
interactions between input variables.

e Adversarial training boosts the robustness of DNNs by learning more
discriminative low-order interactions.

« We proposed a unified explanation for several adversarial defense
methods.




> AT boosts the robustness of high-order interactions

Attacking utility of m-order interactions: A].(m) -

ij nn-1) i
Standard DNN Adversarially trained DNN
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In adversarially learned DNNs, attacking utilities of high-order
interactions significantly decreased.




AT learns more reliable low-order interactions to boost the
> robustness of high-order interactions

Disentanglement:
(m) i A
D™ = Breaiyev s i (T)A s Whether the m-order interactions
i ZUSCN\{ig}|S|=m 12U\B 1 O1T . Lo :
Secnvn s Mg s  represent discriminative
=E,cqllijen = AL

i Lsemaisi=m 182008191 information of a specific category.

In adversarially trained DNNs, low-order interactions exhibited higher disentanglement
-> more category-specific information
-> strengthen the robustness of high-order interactions.
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> Contributions of this paper

e We discover that adversarial attacks mainly affect high-order
interactions between input variables.

 Adversarial training boosts the robustness of DNNs by learning more
discriminative low-order interactions.

 \We proposed a unified explanation for several adversarial defense
methods.




> The unified explanation for previous adversarial defenses

e Attribution-based method for detecting
adversarial examples: ML-LOOP!

e Rank-based method for detecting adversarial
examples!®]
e Cutout method!”]

» High recoverability of adversarial examples in
adversarially trained DNNs

-/

-

Detecting the highest-
order interaction (the most
sensitive component).

Utilizing discriminative low-
order interactions and
removing sensitive high-
order interactions to boost
the robustness.




> Contributions of this paper

» \We discover that adversarial attacks mainly affect high-order
interactions between input variables.

e Adversarial training boosts the robustness of DNNs by learning more
discriminative low-order interactions.

 We proposed a unified explanation for several adversarial defense
methods.

THANK YOU ! A



