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Multi-Label Classification
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Multi-Label Classification

x, c1, c2, …, cL ~ (X, C1, C2, …, CL) 

such that ci = 1 if class i applies to x, and ci = 0 otherwise

Goal:

Construct f(x) = c1, c2, …, cL
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Leading Approach: Recurrent Classifier Chains

P(C1, C2, …, CL|X) = P(C1|X)     P(Ci|C<i,X)
i=2

L

Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label 
classification." NeurIPS 2017. 
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P(C1, C2, …, CL|X) = P(C1|X)     P(Ci|C<i,X)
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P(C1, C2, …, CL|X) = P(C1|X)     P(Ci|C<i,X)
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Limitation 3: Large Label Sets

P(C1, C2, …, CL|X) = P(C1|X)     P(Ci|C<i,X)
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Our Approach: 
Recurrent Bayesian Classifier Chains
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RBCC key components:

1. Infer Bayesian network of label dependencies

2. Modify RCC architecture to only use parent classes 
(defined by Bayesian network) for inference 
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RBCC key components:

1. Infer Bayesian network of label dependencies

2. Modify RCC architecture to only use parent classes 
(defined by Bayesian network) for inference 

Tackles challenges by:

• Eliminating noisy conditioning
• Minimizing error propagation
• Removing need for long-term memory 

Overview of Recurrent Bayesian Classifier Chains



Worcester Polytechnic Institute
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RBCC Step 1: Label Dependency Graph
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Pa𝓖E(E2) = {E1} 
Pa𝓖C(C2) = {C1, X} 
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Ci = ki(X) + Ei => Ei = Ci -f(x)

Where ki is found by maximizing data likelihood 

RBCC Step 1: Label Dependency Graph
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Zhang, Min-Ling, et al.  "Multi-label learning by exploiting label dependency." KDD  2010.
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Network construction:

• Hill climbing [1]
• Constraint based [2]
• Chow Liu algorithm [3]

RBCC Step 1: Label Dependency Graph
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[1] Daly , Rónán, et al. “Methods to accelerate the learning of bayesian network 
structures.” UKCI 2007. 
[2] Verma , Thomasand, et al. “Equivalence and synthesis of causal models.” 1991. 
[3] Chow, C., et al. “Approximating discrete probability distributions with 
dependence trees.”. IEEE Transactions on Information Theory 1968. 
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RBCC Step 2: Model Training
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Inference requires either:

• Topological sorting
• Recursive function call
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Compared Methods

• Recurrent Classier Chains (RCC) [1]

• Topological-Sort RCC (TS-RCC) [1] 

• Order-Free RCC (OF-RCC) [2]

• Bayesian Classifier Chains (BCC) [3]

• Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.
[2] Shang-Fu Chen, et al. “Order-free RNN with visual attention for multi-label classification.”  AAAI 2018. 
[3] Zhang, Min-Ling, et al.  "Multi-label learning by exploiting label dependency." KDD  2010.
[4] Tsoumakas , Grigorios Tsoumakas aet al. “Multi label classification: An overview.” IJDWM  2007.



Worcester Polytechnic Institute

Compared Methods

• Recurrent Classier Chains (RCC) [1]

• Topological-Sort RCC (TS-RCC) [1] 

• Order-Free RCC (OF-RCC) [2]

• Bayesian Classifier Chains (BCC) [3]

• Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.
[2] Shang-Fu Chen, et al. “Order-free RNN with visual attention for multi-label classification.”  AAAI 2018. 
[3] Zhang, Min-Ling, et al.  "Multi-label learning by exploiting label dependency." KDD  2010.
[4] Tsoumakas , Grigorios Tsoumakas aet al. “Multi label classification: An overview.” IJDWM  2007.



Worcester Polytechnic Institute

Compared Methods

• Recurrent Classier Chains (RCC) [1]

• Topological-Sort RCC (TS-RCC) [1] 

• Order-Free RCC (OF-RCC) [2]

• Bayesian Classifier Chains (BCC) [3]

• Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.
[2] Shang-Fu Chen, et al. “Order-free RNN with visual attention for multi-label classification.”  AAAI 2018. 
[3] Zhang, Min-Ling, et al.  "Multi-label learning by exploiting label dependency." KDD  2010.
[4] Tsoumakas , Grigorios Tsoumakas aet al. “Multi label classification: An overview.” IJDWM  2007.



Worcester Polytechnic Institute

Compared Methods

• Recurrent Classier Chains (RCC) [1]

• Topological-Sort RCC (TS-RCC) [1] 

• Order-Free RCC (OF-RCC) [2]

• Bayesian Classifier Chains (BCC) [3]

• Binary Decomposition (BD) [4]

[1] Nam, Jinseok, et al. "Maximizing subset accuracy with recurrent neural networks in multi-label classification." NeurIPS 2017.
[2] Shang-Fu Chen, et al. “Order-free RNN with visual attention for multi-label classification.”  AAAI 2018. 
[3] Zhang, Min-Ling, et al.  "Multi-label learning by exploiting label dependency." KDD  2010.
[4] Tsoumakas , Grigorios Tsoumakas aet al. “Multi label classification: An overview.” IJDWM  2007.



Worcester Polytechnic Institute

Datasets

We compare on 6 benchmark multi-label datasets:

• PASCAL VOC 2007
• Scene
• Yeast
• Enron
• EukaryoteGO
• Yeast

M. Everingham, et al. “The “PASCAL Visual Object Classes Challenge” 2007
Boutell, Matthew, et al. “Learning multi-label scene classification.”  Pattern Recognition 2004.
Sajnani, Hitesh et al.  “Classifying yelp reviews into relevant categories”. 2012. 
Klimt, B., et. al. “The Enron Corpus: A New Dataset for Email Classification Research.”  ECML 2004.
Xu, Jianhua et al. “A multi-label feature extraction algorithm via maximizing feature variance and feature-label dependence simultaneously”. Knowledge-Based Systems 2016.
Elisseeff, A., et al.  “A Kernel Method for Multi-Labelled Classification.” NeurIPS 2001. 
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Conclusions

In this work we:

• Identified flaws with state-of-the-art multi-label approach (RCC)

• Proposed new multi-label approach that leverages label dependence 

and independence to improve RCC training and inference

• Performed experimental study illustrating the practical improvement 

of our approach
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