Least Square Calibration for Peer Reviews

Sijun Tan¹ **Jibang Wu**¹ Xiaohui Bei² Haifeng Xu¹ **NeurIPS. Dec 2021**

¹University of Virginia

²Nanyang Technological University

Introduction

Introduction

Peer review systems are ubiquitous in a data-driven world.

Introduction

Peer review systems are ubiquitous in a data-driven world.

Peer review is also an essential part of academic research.

Calibration for Peer Review

"Your 2 is My 1, Your 3 is My 9."

[WS18]

• Miscalibration is a prevalent problem.

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - Averaging reviewers' scores

[WS18]

- *Miscalibration* is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - Averaging reviewers' scores
 - Open discussions and expert advice (e.g. Area Chairs)

Tan. Wu. Bei & Xu LSC for Peer Review

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - Averaging reviewers' scores
 - Open discussions and expert advice (e.g. Area Chairs)
- Challenges:

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - · Averaging reviewers' scores
 - Open discussions and expert advice (e.g. Area Chairs)
- Challenges:
 - Sparsity of review data

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - · Averaging reviewers' scores
 - Open discussions and expert advice (e.g. Area Chairs)
- Challenges:
 - Sparsity of review data
 - Human factors

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - Averaging reviewers' scores
 - Open discussions and expert advice (e.g. Area Chairs)
- Challenges:
 - Sparsity of review data
 - Human factors
 - Inflexibility

[WS18]

- Miscalibration is a prevalent problem.
 - stringent or lenient: Reviewers have different standard and bias.
 - perception error: We all make mistakes.
- Typical calibration techniques:
 - Averaging reviewers' scores
 - Open discussions and expert advice (e.g. Area Chairs)
- Challenges:
 - Sparsity of review data
 - Human factors
 - Inflexibility

We propose an optimization-driven framework to mitigate miscalibration.

N papers

• Reviewer j reviews a subset of the papers $I_i \subseteq [N]$.

$$I_A = \{1, 2, 3, 4\}$$

$$I_B = \{1, 4, 5, 7\}$$

$$I_C = \{4, 6, 7\}$$

N papers

• Reviewer j reviews a subset of the papers $I_i \subseteq [N]$.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

• I_j^ℓ, y_j^ℓ denotes index/score of ℓ th highest paper scored by reviewer j

$$I_A^1 = I_B^2 = 1, \quad y_A^1 = 5, y_B^2 = 3$$

 $I_B^1 = I_C^1 = 4, \quad y_B^1 = 4, y_C^1 = 7$

N papers

Common hypothesis on score generation process
 [GWG, RRS11, BK13, MKLP17, WSWS20]

$$y_j^{\ell} := f_j(x^*(I_j^{\ell}) + \epsilon_j^{\ell})$$

where ϵ_j^ℓ is independent zero-mean Gaussian noise, $x^*(i)$ is paper i's unknown ground-truth quality, f_j is reviewer j's scoring function.

$$I_B^1 = I_C^1 = 4$$

 $y_B^1 = f_B(x^*(4) + \epsilon_B^1)$
 $y_C^1 = f_C(x^*(4) + \epsilon_C^1)$

N papers

x*(4)

6

В

 Common hypothesis on score generation process [GWG, RRS11, BK13, MKLP17, WSWS20]

$$y_j^{\ell} := f_j(x^*(I_j^{\ell}) + \epsilon_j^{\ell})$$

where ϵ_j^ℓ is independent zero-mean Gaussian noise, $x^*(i)$ is paper i's unknown ground-truth quality, f_j is reviewer j's scoring function.

It would be an intractable Matrix Seriation problem, if ϵ_j^ℓ is modeled outside f_j .

Input:

• Paper assignments $\{I_j\}_{j\in[N]}$

Input:

- Paper assignments $\{I_j\}_{j\in[N]}$
- Review scores $\{y_j^{\ell}\}_{j \in [M], \ell \in [I_j]}$

Input:

- Paper assignments $\{I_j\}_{j\in[N]}$
- Review scores $\{y_j^{\ell}\}_{j \in [M], \ell \in [I_j]}$

Input:

- Paper assignments $\{I_j\}_{j\in[N]}$
- Review scores $\{y_j^\ell\}_{j\in[M],\ell\in[I_j]}$
- Threshold parameter $n \leq N$

Input:

- Paper assignments $\{I_j\}_{j\in[N]}$
- Review scores $\{y_j^{\ell}\}_{j\in[M],\ell\in[I_j]}$
- Threshold parameter $n \leq N$

Output: a set S of n items

Input:

- Paper assignments $\{I_j\}_{j\in[N]}$
- Review scores $\{y_j^{\ell}\}_{j \in [M], \ell \in [I_j]}$
- Threshold parameter $n \leq N$

Output: a set S of n items

Objective:

S matches with ground-truth top n items based on x^* .

Input:

- Paper assignments $\{I_j\}_{j\in[N]}$
- Review scores $\{y_j^{\ell}\}_{j \in [M], \ell \in [I_j]}$
- Threshold parameter $n \leq N$

Output: a set S of n items

Objective:

S matches with ground-truth top n items based on x^* .

To identify the papers with the best true qualities.

Methods

$$\begin{aligned} & \min_{\mathbf{x},\mathbf{f},\epsilon} & & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ & \text{s.t.} & & y_j^{\ell} = f_j \left(x(I_j^{\ell}) + \epsilon_j^{\ell} \right) \text{ and } f_j \in \mathcal{H} \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{f}, \epsilon} & & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ & \text{s.t.} & & y_j^{\ell} = f_j \left(x(I_j^{\ell}) + \epsilon_j^{\ell} \right) \text{ and } f_j \in \mathcal{H} \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

Interpretations:

• Unsupervised Learning:

Given hypothesis class \mathcal{H} , find $f_1, \dots, f_M \in \mathcal{H}$ and true qualities \mathbf{x} with the least noise to match with review scores $\{y_i^\ell\}_{j\in[M],\ell\in[I_i]}$.

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{f}, \epsilon} & & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ & \text{s.t.} & & y_j^{\ell} = f_j \left(x(I_j^{\ell}) + \epsilon_j^{\ell} \right) \text{ and } f_j \in \mathcal{H} \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

Interpretations:

• Unsupervised Learning:

Given hypothesis class \mathcal{H} , find $f_1, \dots, f_M \in \mathcal{H}$ and true qualities \mathbf{x} with the least noise to match with review scores $\{y_i^\ell\}_{j\in[M],\ell\in[I_i]}$.

• MLE:

Find parameters \mathbf{x} , \mathbf{f} to maximize likelihood of observation y_j^ℓ under Gaussian noise ϵ_j^ℓ .

$$\begin{aligned} & \min_{\mathbf{x},\mathbf{f},\epsilon} & & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ & \text{s.t.} & & y_j^{\ell} = f_j \left(\mathbf{x}(I_j^{\ell}) + \epsilon_j^{\ell} \right) \text{ and } f_j \in \mathcal{H} \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

Interpretations:

• Unsupervised Learning:

Given hypothesis class \mathcal{H} , find $f_1, \dots, f_M \in \mathcal{H}$ and true qualities \mathbf{x} with the least noise to match with review scores $\{y_i^\ell\}_{i \in [M], \ell \in [I_i]}$.

• MLE:

Find parameters \mathbf{x} , \mathbf{f} to maximize likelihood of observation y_j^ℓ under Gaussian noise ϵ_j^ℓ .

But functional optimization problem is intractable in general?

LSC under different hypothesis classes

Suppose
$$\mathcal{H} = \{ f : f(x) = ax + b \mid a \ge 0, b \in \mathbb{R} \}$$
,

$$\begin{aligned} \min_{\mathbf{x},\alpha,\beta,\epsilon} \quad & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ \text{s.t.} \quad & \mathbf{y}_j^{\ell} = \alpha_j \cdot (\mathbf{x}(I_j^{\ell}) + \epsilon_j^{\ell}) + \beta_j \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

LSC is reduced to a simple quadratic program.

LSC under different hypothesis classes

Suppose
$$\mathcal{H} = \{ f : f(x) = ax + b \mid a \ge 0, b \in \mathbb{R} \}$$
,

$$\begin{aligned} \min_{\mathbf{x},\alpha,\beta,\epsilon} \quad & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ \text{s.t.} \quad & \mathbf{y}_j^{\ell} = \alpha_j \cdot (\mathbf{x}(I_j^{\ell}) + \epsilon_j^{\ell}) + \beta_j \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

LSC is reduced to a simple quadratic program.

 In fact, we can solve LSC efficiently for any monotone function, any linear scoring function, convex/concave scoring function as well as their mixture.

$$\begin{split} & \underset{\mathbf{x},\epsilon}{\min} & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 & \text{LSC (mono)} \\ & \text{s.t.} & \widetilde{x}_j^{\ell} = x(I_j^{\ell}) + \epsilon_j^{\ell} & \forall j \in [M], 1 \leq \ell \leq |I_j| \\ & \widetilde{x}_j^{\ell} - \widetilde{x}_j^{\ell-1} \geq \frac{y_j^{\ell} - y_j^{\ell-1}}{C} & \forall j \in [M], 2 \leq \ell \leq |I_j| \end{split}$$

• In fact, we can solve LSC efficiently for any monotone function, any linear scoring function, convex/concave scoring function as well as their mixture.

$$\begin{aligned} & \underset{\mathbf{x},\epsilon}{\min} & & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 & \text{LSC (convex)} \\ & \text{s.t.} & & \widetilde{\chi}_j^{\ell} - \widetilde{\chi}_j^{\ell-1} \geq 1 & \forall j \in [M], 2 \leq \ell \leq |I_j| \\ & & & \frac{\widetilde{\chi}_j^{\ell} - \widetilde{\chi}_j^{\ell-1}}{y_j^{\ell} - y_j^{\ell-1}} \leq \frac{\widetilde{\chi}_j^{\ell+1} - \widetilde{\chi}_j^{\ell}}{y_j^{\ell+1} - y_j^{\ell}} & \forall j \in [M], 2 \leq \ell \leq |I_j| - 1 \end{aligned}$$

 In fact, we can solve LSC efficiently for any monotone function, any linear scoring function, convex/concave scoring function as well as their mixture.

$$\begin{aligned} & \underset{\mathbf{x},\mathbf{f},\epsilon}{\min} & & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ & \text{s.t.} & & y_j^{\ell} = f_j \left(x(I_j^{\ell}) + \epsilon_j^{\ell} \right) \\ & & f_j \in \mathcal{H}^{\mathbf{mono}}, f_k \in \mathcal{H}^{\mathbf{linear}}, f_p \in \mathcal{H}^{\mathbf{convex}}, f_q \in \mathcal{H}^{\mathbf{concave}} \end{aligned}$$

 In fact, we can solve LSC efficiently for any monotone function, any linear scoring function, convex/concave scoring function as well as their mixture.

Hence, LSC framework is adaptive to different levels of prior knowledge.

$$\min_{\mathbf{x}, lpha, eta, \epsilon} \quad \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^\ell)^2$$
 LSC (linear)

s.t.
$$y_j^{\ell} = \alpha_j \cdot (x(I_j^{\ell}) + \epsilon_j^{\ell}) + \beta_j$$
 $\forall j \in [M], \ell \leq |I_j|$

$$\min_{lpha,eta,\epsilon} \ \sum_{j=1}^M (\epsilon^\ell)^2$$
 Ordinary Linear Regression (OLS)

$$\text{s.t.} \qquad \mathbf{y}^\ell = \alpha \cdot \mathbf{x}^\ell + \boldsymbol{\beta} + \boldsymbol{\epsilon}^\ell \qquad \qquad \forall \ell$$

$$\min_{\mathbf{x},\alpha,\beta,\epsilon} \quad \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2$$

$$\text{LSC (linear)}$$

$$\text{s.t.} \quad y_i^{\ell} = \alpha_i \cdot (\mathbf{x}(I_i^{\ell}) + \epsilon_i^{\ell}) + \beta_i$$

$$\forall j \in [M], \ell \leq |I_j|$$

$$\min_{\alpha,\beta,\epsilon} \quad \sum_{j=1}^{M} (\epsilon^{\ell})^2 \qquad \text{Ordinary Linear Regression (OLS)}$$
 s.t.
$$y^{\ell} = \alpha \cdot x^{\ell} + \beta + \epsilon^{\ell} \qquad \qquad \forall \ell$$

1. x is known in OLS, but unknown in LSC (unsupervised).

$$\begin{aligned} \min_{\mathbf{x},\alpha,\beta,\epsilon} \quad & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ \text{s.t.} \quad & y_j^{\ell} = \alpha_j \cdot (\mathbf{x}(I_j^{\ell}) + \epsilon_j^{\ell}) + \beta_j \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

$$\begin{array}{ll} \min\limits_{\alpha,\beta,\epsilon} & \displaystyle\sum_{j=1}^{M} (\epsilon^{\ell})^2 & \text{Ordinary Linear Regression (OLS)} \\ \text{s.t.} & \displaystyle y^{\ell} = \alpha \cdot x^{\ell} + \beta + \epsilon^{\ell} & \forall \ell \end{array}$$

- 1. x is known in OLS, but unknown in LSC (unsupervised).
- 2. LSC models the extra structure in the paper assignments: Paper i have consistent x_i ; Reviewer j have consistent f_i .

$$\begin{aligned} \min_{\mathbf{x},\alpha,\beta,\epsilon} \quad & \sum_{j=1}^{M} \sum_{\ell=1}^{|I_j|} (\epsilon_j^{\ell})^2 \\ \text{s.t.} \quad & y_j^{\ell} = \alpha_j \cdot (\mathbf{x}(I_j^{\ell}) + \epsilon_j^{\ell}) + \beta_j \end{aligned} \qquad \forall j \in [M], \ell \leq |I_j|$$

$$\min_{\alpha,\beta,\epsilon} \quad \sum_{j=1}^{M} (\epsilon^{\ell})^{2} \qquad \qquad \text{Ordinary Linear Regression (OLS)}$$
 s.t.
$$\mathbf{v}^{\ell} = \alpha \cdot \mathbf{x}^{\ell} + \beta + \epsilon^{\ell} \qquad \qquad \forall \ell$$

- 1. x is known in OLS, but unknown in LSC (unsupervised).
- 2. LSC models the extra structure in the paper assignments: Paper i have consistent x_i ; Reviewer j have consistent f_i .

How does LSC guarantee that x, f is necessarily ground-truth x^* , f^* ?

Without perception noise, LSC is reduced to a linear feasibility problem:

Without perception noise, LSC is reduced to a linear feasibility problem:

$$\begin{aligned} & \underset{\mathbf{x}}{\text{min}} & & 0 \\ & \text{s.t.} & & x(I_j^{\ell}) - x(I_j^{\ell-1}) \ge 1 \\ & & & \frac{x(I_j^{\ell}) - x(I_j^{\ell-1})}{y_i^{\ell} - y_j^{\ell-1}} = \frac{x(I_j^{\ell+1}) - x(I_j^{\ell})}{y_j^{\ell+1} - y_j^{\ell}} & \forall j \in [M], 2 \le \ell \le |I_j| - 1 \end{aligned}$$

Without perception noise, LSC is reduced to a linear feasibility problem:

$$\begin{aligned} & \underset{\mathbf{x}}{\min} & & 0 \\ & \text{s.t.} & & & x(I_j^{\ell}) - x(I_j^{\ell-1}) \geq 1 \\ & & & \frac{x(I_j^{\ell}) - x(I_j^{\ell-1})}{y_i^{\ell} - y_j^{\ell-1}} = \frac{x(I_j^{\ell+1}) - x(I_j^{\ell})}{y_j^{\ell+1} - y_i^{\ell}} & & \forall j \in [M], 2 \leq \ell \leq |I_j| - 1 \end{aligned}$$

The effectiveness of calibration depends on the assignment:

• Reviewer *j* reviewed only one paper that are also reviewed by others.

Without perception noise, LSC is reduced to a linear feasibility problem:

$$\begin{aligned} & \underset{\mathbf{x}}{\min} & & 0 \\ & \text{s.t.} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

The effectiveness of calibration depends on the assignment:

- Reviewer *j* reviewed only one paper that are also reviewed by others.
- Even if we know the ground-truth quality of this paper,

Without perception noise, LSC is reduced to a linear feasibility problem:

$$\begin{split} & \underset{\mathbf{x}}{\min} & 0 \\ \text{s.t.} & & x(I_j^{\ell}) - x(I_j^{\ell-1}) \geq 1 \\ & & \frac{x(I_j^{\ell}) - x(I_j^{\ell-1})}{y_i^{\ell} - y_i^{\ell-1}} = \frac{x(I_j^{\ell+1}) - x(I_j^{\ell})}{y_i^{\ell+1} - y_i^{\ell}} & \forall j \in [M], 2 \leq \ell \leq |I_j| - 1 \end{split}$$

The effectiveness of calibration depends on the assignment:

- Reviewer j reviewed only one paper that are also reviewed by others.
- Even if we know the ground-truth quality of this paper,
- ullet there are infinitely many feasible $x(I_j^\ell), f_j$ to match observation $y_j^\ell.$

Without perception noise, LSC is reduced to a linear feasibility problem:

$$\begin{split} & \underset{\mathbf{x}}{\min} & 0 \\ \text{s.t.} & & x(I_j^{\ell}) - x(I_j^{\ell-1}) \geq 1 \\ & & \frac{x(I_j^{\ell}) - x(I_j^{\ell-1})}{y_i^{\ell} - y_i^{\ell-1}} = \frac{x(I_j^{\ell+1}) - x(I_j^{\ell})}{y_i^{\ell+1} - y_i^{\ell}} & \forall j \in [M], 2 \leq \ell \leq |I_j| - 1 \end{split}$$

The effectiveness of calibration depends on the assignment:

- Reviewer *j* reviewed only one paper that are also reviewed by others.
- Even if we know the ground-truth quality of this paper,
- ullet there are infinitely many feasible $x(I_j^\ell), f_j$ to match observation $y_j^\ell.$

What assignment rule do we need?

$$I_A = \{1, 2, 3, 4\}$$

 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex,

$$I_A = \{1, 2, 3, 4\}$$

 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

Theorem (Informal)

LSC perfectly recovers a review graph G iff. G has a doubly-connected component S that covers all papers, i.e., $\bigcup_{i \in S} I_i = [N]$.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

This instance forms a doubly-connected graph.

Theorem (Informal)

LSC perfectly recovers a review graph G iff. G has a doubly-connected component S that covers all papers, i.e., $\bigcup_{i \in S} I_i = [N]$.

The notion of double-connectivity generalizes from single-connectivity.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

Theorem (Informal)

LSC perfectly recovers a review graph G iff. G has a doubly-connected component S that covers all papers, i.e., $\bigcup_{i \in S} I_i = [N]$.

Remark. Paper assignment matters for successful calibration.

$$I_A = \{1, 2, 3, 4\}$$
 $I_B = \{1, 4, 5, 7\}$
 $I_C = \{4, 6, 7\}$

Review Graph. reviewer as vertex, commonly reviewed paper as edge.

Theorem (Informal)

LSC perfectly recovers a review graph G iff. G has a doubly-connected component S that covers all papers, i.e., $\bigcup_{i \in S} I_i = [N]$.

Remark. Paper assignment matters for successful calibration.

A justification for the extra reviews in post-rebuttal discussions!

Experiments

Datasets:

• Synthesized Conference Review Data (due to lack of x*)

Datasets:

- Synthesized Conference Review Data (due to lack of x*)
- Peer-Grading Dataset [SAvL16]

Datasets:

- Synthesized Conference Review Data (due to lack of x*)
- Peer-Grading Dataset [SAvL16]

Baselines:

• Average, the most common heuristic

Datasets:

- Synthesized Conference Review Data (due to lack of x*)
- Peer-Grading Dataset [SAvL16]

Baselines:

- Average, the most common heuristic
- The quadratic program (**QP**) proposed by [RRS11]
- The bayesian model (**Bayesian**) proposed by [GWG]

Datasets:

- Synthesized Conference Review Data (due to lack of x*)
- Peer-Grading Dataset [SAvL16]

Baselines:

- Average, the most common heuristic
- The quadratic program (QP) proposed by [RRS11]
- The bayesian model (Bayesian) proposed by [GWG]

Metrics:

- Precision, the percentage of selected ground-truth top papers
- Ranking-based metrics such as NDCG

Experiment Results

Table 1: Performance on Conference Review (L) and Peer-Grading (R) dataset

Metric Model	Pre. (%)	NDCG (%)	Pre. (%)	NDCG (%)
Average	39.2	45.8	0.80	0.34
QP	69.2	68.9	0.80	0.82
Bayesian	71.5	71.4	0.78	0.71
LSC (mono)	75.9	79.2	0.78	0.81
LSC (linear)	80.1	84.7	0.82	0.85

Conference review data is generated with random linear scoring function with perception noisy ($\sigma = 0.5$).

Experiment Results

Table 1: Performance on Conference Review (L) and Peer-Grading (R) dataset

Metric Model	Pre. (%)	NDCG (%)	Pre. (%)	NDCG (%)
Average	39.2	45.8	0.80	0.34
QP	69.2	68.9	0.80	0.82
Bayesian	71.5	71.4	0.78	0.71
LSC (mono)	75.9	79.2	0.78	0.81
LSC (linear)	80.1	84.7	0.82	0.85

We use the TA's grade as the ground truth quality x^* .

Experiment Results

 Table 1: Performance on Conference Review (L) and Peer-Grading (R) dataset

Metric Model	Pre. (%)	NDCG (%)	Pre. (%)	NDCG (%)
Average	39.2	45.8	0.80	0.34
QP	69.2	68.9	0.80	0.82
Bayesian	71.5	71.4	0.78	0.71
LSC (mono)	75.9	79.2	0.78	0.81
LSC (linear)	80.1	84.7	0.82	0.85

LSC consistently outperforms other baselines on both datasets.

Robustness to Mis-Specified Prior Knowledge

Figure 1: Performance comparisons in mixed setups

Figure 1: Performance comparisons in mixed setups

• LSC (mix) has the best performances with full prior knowledge.

Robustness to Mis-Specified Prior Knowledge

Figure 1: Performance comparisons in mixed setups

- LSC (mix) has the best performances with full prior knowledge.
- LSC (linear) is robust under mis-specified prior knowledge.

Double Connectivity against Perception Noise

Figure 2: Performance in review graphs of different connectivity and noise level

Double Connectivity against Perception Noise

Figure 2: Performance in review graphs of different connectivity and noise level

Review assignments with double-connectivity can help LSC calibrate.

• LSC is a simple yet powerful unsupervised learning framework for calibration in peer review system.

- LSC is a simple yet powerful unsupervised learning framework for calibration in peer review system.
- It exploits both the robustness of linear regression methods and the topological structure of review graphs.

- LSC is a simple yet powerful unsupervised learning framework for calibration in peer review system.
- It exploits both the robustness of linear regression methods and the topological structure of review graphs.
- We provide a general guideline on the assignment rules in peer review for more effective calibration.

- LSC is a simple yet powerful unsupervised learning framework for calibration in peer review system.
- It exploits both the robustness of linear regression methods and the topological structure of review graphs.
- We provide a general guideline on the assignment rules in peer review for more effective calibration.
- We wish to apply our LSC framework in real conferences!

References i

- Hong Ge, Max Welling, and Zoubin Ghahramani, A bayesian model for calibrating reviewer scores.
- Robert S MacKay, Ralph Kenna, Robert J Low, and Sarah Parker, Calibration with confidence: a principled method for panel assessment, Royal Society open science 4 (2017), no. 2, 160760.

References ii

- Magnus Roos, Jörg Rothe, and Björn Scheuermann, How to calibrate the scores of biased reviewers by quadratic programming, Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25, 2011.
- Mehdi SM Sajjadi, Morteza Alamgir, and Ulrike von Luxburg, Peer grading in a course on algorithms and data structures: Machine learning algorithms do not improve over simple baselines, Proceedings of the third (2016) ACM conference on Learning@ Scale, 2016, pp. 369–378.
- Jingyan Wang and Nihar B. Shah, Your 2 is my 1, your 3 is my 9: Handling arbitrary miscalibrations in ratings, 2018.

References iii

Jingyan Wang, Ivan Stelmakh, Yuting Wei, and Nihar B Shah, *Debiasing evaluations that are biased by evaluations*, arXiv preprint arXiv:2012.00714 (2020).