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Calibration for Peer Review

“Your 2 is My 1, Your 3 is My 9.” [WS18]

• Miscalibration is a prevalent problem.

• stringent or lenient: Reviewers have different standard and bias.

• perception error: We all make mistakes.

• Typical calibration techniques:

• Averaging reviewers’ scores

• Open discussions and expert advice (e.g. Area Chairs)

• Challenges:

• Sparsity of review data

• Human factors

• Inflexibility

We propose an optimization-driven framework to mitigate miscalibration.
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Problem Formulation

• Reviewer j reviews a subset of the papers Ij ⊆ [N].

IA = {1, 2, 3, 4}
IB = {1, 4, 5, 7}
IC = {4, 6, 7}

• I `j , y
`
j denotes index/score of `th highest paper scored

by reviewer j

I 1A = I 2B = 1, y1A = 5, y2B = 3

I 1B = I 1C = 4, y1B = 4, y1C = 7
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Problem Formulation

• Common hypothesis on score generation process

[GWG, RRS11, BK13, MKLP17, WSWS20]

y `j := fj(x
∗(I `j ) + ε`j )

where ε`j is independent zero-mean Gaussian noise,

x∗(i) is paper i ’s unknown ground-truth quality,

fj is reviewer j ’s scoring function.

I 1B = I 1C = 4

y1B = fB(x∗(4) + ε1B)

y1C = fC (x∗(4) + ε1C )

• It would be an intractable Matrix Seriation problem,

if ε`j is modeled outside fj .
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Problem Formulation

Input:

• Paper assignments {Ij}j∈[N]

• Review scores {y `j }j∈[M],`∈[Ij ]

• Threshold parameter n ≤ N

Output: a set S of n items

Objective:

S matches with ground-truth top n items based on x∗.

To identify the papers with the best true qualities.
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Methods



Least Square Calibration (LSC)

min
x,f,ε

M∑
j=1

|Ij |∑
`=1

(ε`j )
2

s.t. y `j = fj

(
x(I `j ) + ε`j

)
and fj ∈ H ∀j ∈ [M], ` ≤ |Ij |

Interpretations:

• Unsupervised Learning:

Given hypothesis class H, find f1, · · · , fM ∈ H and true qualities x

with the least noise to match with review scores {y `j }j∈[M],`∈[Ij ].

• MLE:

Find parameters x, f to maximize likelihood of observation y `j under

Gaussian noise ε`j .

But functional optimization problem is intractable in general?
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LSC under different hypothesis classes

Suppose H = {f : f (x) = ax + b | a ≥ 0, b ∈ R},

min
x,α,β,ε

M∑
j=1

|Ij |∑
`=1

(ε`j )
2 LSC (linear)

s.t. y `j = αj · (x(I `j ) + ε`j ) + βj ∀j ∈ [M], ` ≤ |Ij |

LSC is reduced to a simple quadratic program.

• In fact, we can solve LSC efficiently for any monotone function, any

linear scoring function, convex/concave scoring function as well as

their mixture.

Hence, LSC framework is adaptive to different levels of prior knowledge.
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LSC under different hypothesis classes
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Linear Regression and LSC with linear scoring functions

min
x,α,β,ε

M∑
j=1

|Ij |∑
`=1

(ε`j )
2 LSC (linear)

s.t. y `j = αj · (x(I `j ) + ε`j ) + βj ∀j ∈ [M], ` ≤ |Ij |

min
α,β,ε

M∑
j=1

(ε`)2 Ordinary Linear Regression (OLS)

s.t. y ` = α · x` + β + ε` ∀`

1. x is known in OLS, but unknown in LSC (unsupervised).

2. LSC models the extra structure in the paper assignments:

Paper i have consistent xi ; Reviewer j have consistent fj .

How does LSC guarantee that x, f is necessarily ground-truth x∗, f∗?
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When/Why LSC works?

Without perception noise, LSC is reduced to a linear feasibility problem:

min
x

0

s.t. x(I `j )− x(I `−1j ) ≥ 1 ∀j ∈ [M],∀2 ≤ ` ≤ |Ij |

x(I `j )− x(I `−1j )

y `j − y `−1j

=
x(I `+1

j )− x(I `j )

y `+1
j − y `j

∀j ∈ [M], 2 ≤ ` ≤ |Ij | − 1

The effectiveness of calibration depends on the assignment:

• Reviewer j reviewed only one paper that are also reviewed by others.

• Even if we know the ground-truth quality of this paper,

• there are infinitely many feasible x(I `j ), fj to match observation y `j .

What assignment rule do we need?

Tan, Wu, Bei & Xu LSC for Peer Review 10/19
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Perfect Recovery and Doubly-Connected Review Graph

IA = {1, 2, 3, 4}
IB = {1, 4, 5, 7}
IC = {4, 6, 7}

Review Graph.

commonly reviewed

paper as edge.

This instance forms a doubly-connected graph.

Theorem (Informal)

LSC perfectly recovers a review graph G iff. G has a doubly-connected

component S that covers all papers, i.e.,
⋃

i∈S Ii = [N].

Remark. Paper assignment matters for successful calibration.

A justification for the extra reviews in post-rebuttal discussions!
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Experiments



Experiment Setup

Datasets:

• Synthesized Conference Review Data (due to lack of x∗)

• Peer-Grading Dataset [SAvL16]

Baselines:

• Average, the most common heuristic

• The quadratic program (QP) proposed by [RRS11]

• The bayesian model (Bayesian) proposed by [GWG]

Metrics:

• Precision, the percentage of selected ground-truth top papers

• Ranking-based metrics such as NDCG
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Experiment Results

Table 1: Performance on Conference Review (L) and Peer-Grading (R) dataset

Model

Metric
Pre. (%) NDCG (%) Pre. (%) NDCG (%)

Average 39.2 45.8 0.80 0.34

QP 69.2 68.9 0.80 0.82

Bayesian 71.5 71.4 0.78 0.71

LSC (mono) 75.9 79.2 0.78 0.81

LSC (linear) 80.1 84.7 0.82 0.85

Conference review data is generated with random linear scoring function

with perception noisy (σ = 0.5).
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Bayesian 71.5 71.4 0.78 0.71
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LSC (linear) 80.1 84.7 0.82 0.85

We use the TA’s grade as the ground truth quality x∗.
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Experiment Results

Table 1: Performance on Conference Review (L) and Peer-Grading (R) dataset

Model

Metric
Pre. (%) NDCG (%) Pre. (%) NDCG (%)

Average 39.2 45.8 0.80 0.34

QP 69.2 68.9 0.80 0.82

Bayesian 71.5 71.4 0.78 0.71

LSC (mono) 75.9 79.2 0.78 0.81

LSC (linear) 80.1 84.7 0.82 0.85

LSC consistently outperforms other baselines on both datasets.
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Robustness to Mis-Specified Prior Knowledge

Figure 1: Performance comparisons in mixed setups
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• LSC (mix) has the best performances with full prior knowledge.

• LSC (linear) is robust under mis-specified prior knowledge.
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Double Connectivity against Perception Noise

Figure 2: Performance in review graphs of different connectivity and noise level
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Review assignments with double-connectivity can help LSC calibrate.
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Conclusion

• LSC is a simple yet powerful unsupervised learning framework for

calibration in peer review system.

• It exploits both the robustness of linear regression methods and the

topological structure of review graphs.

• We provide a general guideline on the assignment rules in peer

review for more effective calibration.

• We wish to apply our LSC framework in real conferences!
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