
Galerkin Transformer

Shuhao Cao

supported in part by NSF grant DMS-1913080 and DMS-2136075

Washington University in St. Louis

https://arxiv.org/abs/2105.14995

https://github.com/scaomath/galerkin-transformer

https://scaomath.github.io/blog/galerkin-transformer/

https://arxiv.org/abs/2105.14995
https://github.com/scaomath/galerkin-transformer
https://scaomath.github.io/blog/galerkin-transformer/

How the story began

Prof. Dr. Long Chen (UC Irvine) shared with me a blog article in Chinese
about a submission in ICLR 2021 back in October 20201.

Rough translation: The
Caltech group proposed
an awesome method
called “Fourier Neural
Operator” (FNO).

Simple idea: learn a kernel
function in frequency
domain. Combining with
nonlinearity in space to
achieve the
state-of-the-art accuracy
and performance.

1 Z. Li et al. In International Conference on Learning Representations, 2021.

Toy model: a simple viscid Burgers’ equation benchmark

A nice benchmark problem with a periodic boundary condition in PDE
dataset2 for a viscosity ν = (2π)−10.1

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
for (x , t) ∈ (0, 1)× (0, t1],

u(x , 0) = u0(x) for x ∈ (0, 1).

u0 ∈ C 0
per ([0, 1]) ∩ L2([0, 1]), u(·, t1) ∈ H1

per ((0, 1)).

The operator to be learned is an approximation to t1 = 1� ∆t:

T maps u0(·) to u(·, 1).

Directly inferring the solution at a time step that traditional
integrator (usually in 10−4 to 10−5range) can never dream of
(Courant–Friedrichs–Lewy condition).

2 Z. Li et al. In International Conference on Learning Representations, 2021.

What does this problem look like?

−1.0

−0.5

0.0

0.5

1.0

Input: u0(x)

Output: u(x, 1)

−0.50

−0.25

0.00

0.25

0.50

Input: u0(x)

Output: u(x, 1)

−0.2

0.0

0.2

0.4

Input: u0(x)

Output: u(x, 1)

−0.50

−0.25

0.00

0.25

0.50

0.75

Input: u0(x)

Output: u(x, 1)

Operator learning problem related to PDE

T to be learned are between infinite dimensional Hilbert (Banach) spaces

Parametric PDEs:

◦ The mapping between a varying coefficient to the solution.

◦ The inverse mapping: solution + noise 7→ coeff.

Nonlinear initial value problem for stiff systems:

◦ Direct inference from the initial condition to the solution at a much
later time.

Advantages:

New sample, new boundary condition, new data, no retrain (unlike
function learners).

Train with few samples (∼ 1e3) unlike big language or vision models,
fast inference.

Highly nonlinear problems, problem with poor stability or
well-posedness for traditional methods.

Operator learning problem discretized

seq2seq in Neural Machine Translation is a discretized operator
learning problem.

Encoded message f ∈ Rn×d =⇒ Latent representation ∈ Rn×d =⇒
Decoded message u ∈ Rn×d .

d : latent dimensions dmodel (usually fixed). n: length of the
sequence (discretization size, can be arbitrary under the
computational budget).

The model can be trained on a lower resolution and evaluated at a
(much) higher resolution.

Can we apply the attention mechanism in Transformer
which is all we need to the operator learning?

mm LN
 LN
mm add
 FFN
 add
softmax

=

=

=

Self-attention mechanism in the classical Transformer (figure reproduced for a
single attention head from Attention is All You Need).

A simple encoder-decoder operator learner

Inputs
 Single head

Self-Attention
without Softmax

Feature extractor
(Pointwise FFN)

Decoding
regressor
(Spectral

Conv)

A
pp

ro
x.

A
pp

ro
x.

spacial coordinates

Outputs

A simple attention-based “encoder-decoder” mimicking the ones in NLP.

Feature extractor: Feedforward, CNN, RNN, etc.

Encoder: a stack of identical attention-based encoder layers.

Decoder: a regressor mapping the latent representation to the target
dimension, problem dependent.

Positional encodings: problem dependent.

Burgers’ benchmark: first shot

Classic vanilla Transformer (encoder only) + original hyperbolic
manifold’ish positional encodings.

Fourier Neural Operator (FNO) + Euclidean coordinate positional
encodings.

Grid size: n = 2048. Inference either on n = 2048 or 8192.

Training pairs: 1024; testing: 100. Loss: weighted ‖ · ‖H1 .

Trainer: 25600 iterations of ADAM (100 epochs), 1cycle scheduler.

n = 2048 (eval) GFLOP/backprop n = 8192 (zero-shot eval) # params

FNO1d original3 1.46× 10−2 361.94 ± 1.65 1.26× 10−2 570k
FNO1d re-implement 4.37 × 10−3 369.13± 1.81 4.18 × 10−3 549k
Vanilla Transformer 1.41× 10−1 ≈ 12T 1.47× 10−1 22m

Not good... End of the story (2020 Nov)?

3 Z. Li et al. In International Conference on Learning Representations, 2021.

Rethinking the scaled dot-product Softmax(QK>)V

-th row

-th row

-th
 c

ol
um

n

-th row

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n
(zi)j = h(QK>)i • v j = h

(
qi · k1, . . . ,qi · kl , . . . ,qi · kn

)> · v j

= h
n∑

l=1

(qi · kl)(v j)l ≈
∫

Ω

(
ζq(xi) · φk(ξ)

)
vj(ξ)dξ,

The i-th row in the output computes approx. an integral transform with a
non-symmetric learnable low-rank kernel function κ(x , ξ) := ζq(x)φk(ξ):

zi ≈
∫

Ω

(
ζq(xi)·φk(ξ)

)
ψv (ξ)dξ, where qi = ζq(xi), ki = φk(xi), vi = ψv (xi).

Standing on the shoulder of Giants

-th row

-th row
-th

 c
ol

um
n

-th row
-th

 c
ol

um
n

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n

The positive attention kernel Softmax(QKT) is very familiar to the
FNO’s spectral convolution (treating FFT/iFFT as change of basis).

But FNO does not have softmax!

Softmax is extremely expensive (global dependence in backprop).

Computational cost of QKT scales quadratically w.r.t. n.

Positional token embedding to Hilbertian discretization

Re-interpreting the latent representation in Rn×d from:

Row = A word in a sentence to

Column = A basis function in a Hilbert subspace.

Machine

Learning

The columns of Query/Key/Value contain the learned basis functions
spanning certain subspaces of different Hilbert spaces.

Linear attention: a learnable Petrov-Galerkin projection

In linear attention: Q: values, K : query, V : keys.

While it makes sense to ask the kernel to be positive (similarity
between rows), it does not to ask the interaction between bases
(columns) to be positive.

-th row

-th row

-th
 c

ol
um

n

-th
 c

ol
um

n

-th
 c

ol
um

n -th
 c

ol
um

n

(z j)i = zj(xi) = h
d∑

l=1

(k l · v j)(q l)i ≈
d∑

l=1

(∫
Ω
kl(ξ)vj(ξ)dξ

)
ql(xi).

First result on the approximation capacity of Q(K>V)

Theorem (Approximation capacity of a single layer of Galerkin attention)

Suppose there exists a continuous key-to-value map that is bounded below
on the discrete approximation space, i.e., the functional norm of
v 7→ b(q, v) is bounded below (discrete Ladyzhenskaya–Babuška–Brezzi
inf-sup condition) for any q

min
θ
‖f − gθ(y)‖ ≤c−1 min

q∈Qh

max
v∈Vh

|b(Πf − q, v)|
‖v‖︸ ︷︷ ︸

(Error of the Petrov-Galerkin projection)

+ ‖f − Πf ‖︸ ︷︷ ︸
(How good the current approximation space is)

.

Intepretation: for an incoming “query” (a function in some Hilbert
space), to deliver the best approximator in “value” (trial function
space), the “key” space (test function space) has to be big enough so
that for every value there is a key to unlock it.

Rethinking Burgers’ benchmark

Fourier Neural Operator (FNO) + Euclidean coordinate positional
encodings.

Efficient Transformer4: first Transformer encoder without softmax,
decoder is 2 layers of spectral conv smoother.

n = 2048 (eval) GFLOP/backprop n = 8192 (zero-shot eval) # params

FNO1d original 1.46× 10−2 361.94 ± 1.65 1.26× 10−2 570k
FNO1d re-implement 4.37 × 10−3 369.13± 1.81 4.18 × 10−3 549k
Vanilla Transformer 1.41× 10−1 ≈ 12T 1.47× 10−1 22m
Efficient Transformer 2.08× 10−1 405± 2 2.13× 10−1 523k

It is even worse!

4 Z. Shen et al. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 3531–3539, 2021.

Transformer encoder based on the Galerkin attention

mm

LN

LN

mm
 add
 FFN
 add

=

=

=

Linear complexity: a Galerkin-projection like layer normalization
scheme with a mesh-weighted normalization instead of the softmax.

Positional encoding concatenated in every encoder layer and every
head, unlike only once in the classic Transformer. The importance of
this trick is discovered concurrently in AlphaFold 2.5

5 J. Jumper et al. Nature, 596(7873):583–589, 2021.

Re2thinking Burgers’ benchmark

Fourier Neural Operator (FNO): 4 sc, ReLU changed to SiLU.

Efficient Transformer: first Transformer with an encoder without
softmax, decoder is 2 layers of spectral conv smoother.

Galerkin Transformer (GT): 4 Galerkin attention encoder with the
new layer normalization scheme + 2 sc decoder (same parameter
quota with FNO).

n = 2048 (eval) GFLOP/backprop n = 8192 (zero-shot eval) # params

FNO1d reimplement 4.37 × 10−3 369.13± 1.81 4.18 × 10−3 549k
Vanilla Transformer 1.41× 10−1 ≈ 12T 1.47× 10−1 22m
Efficient Transformer 2.08× 10−1 405± 2 2.13× 10−1 523k
Galerkin Transformer 1.012× 10−2 411.78± 1.83 1.09× 10−2 530k

Ten times better than Transformer without softmax applied directly.

Can we improve the accuracy even more?

Rethinking the Galerkin-type attention operator

z ← y + Attn(y), y ← z + g(z).

as a neural ODE like integration scheme due to the skip-connection:

yk+1/2 ← yk+∆t Attn (yk) and yk+1 ← yk+1/2+∆t g
(
yk+1/2; x

)
A new projection weights initialization scheme inspired by the
interpretation above and the proof of the approximation theorem:

W �
init ← ηU + δI , for � ∈ {Q,K ,V },

where δ and η are small numbers. Similar tricks discovered
concurrently in Csordás et al 2021 (accepted at EMNLP 2021)6.

6 R. Csordás, K. Irie, and J. Schmidhuber. In Proc. Conf. on Empirical Methods
in Natural Language Processing (EMNLP), Punta Cana, Dominican Republic, 2021.

Re3thinking Burgers’ benchmark

Fourier Neural Operator (FNO): 4 sc, ReLU changed to SiLU.

Galerkin Transformer (GT): 4 Galerkin attention encoder with new tricks + 2 sc decoder.

Softmax Transformer (ST): 4 softmax attention encoder with new tricks + 2 sc decoder.

Random Feature Attention (RFA): H. Peng et al. In International Conference on
Learning Representations, 2021 4 RFA + 2 sc.

Performer (FAVOR+): K. M. Choromanski et al. In International Conference on
Learning Representations (ICLR), 2021 4 FAVOR+ + 2 sc.

Multi-Wavelet Operator (MWO): G. Gupta, X. Xiao, and P. Bogdan. In Thirty-Fifth
Conference on Neural Information Processing Systems (NeurIPS 2021), 2021. eprint:
2109.13459 (cs.LG).

CNN+Expressive Diagonalization (XD): N. C. Roberts et al. In Thirty-Fifth
Conference on Neural Information Processing Systems (NeurIPS 2021), 2021. eprint:
2103.15798 (cs.LG)

n = 2048 (eval) GFLOP/backprop n = 8192 (zero-shot eval) # params

FNO1d re-implement 4.37× 10−3 369.13 ± 1.81 4.18× 10−3 549k
ST with all tricks 2.31× 10−3 1876.36± 2.01 2.07× 10−3 523k
RFA 1.72× 10−2 480.11± 1.74 1.91× 10−2 523k
FAVOR+ 1.58× 10−3 510.90± 25.11 1.67× 10−3 523k
GT with some tricks 2.45× 10−3 411.78± 1.83 2.49× 10−3 530k
GT with all tricks 1.09 × 10−3 411.78± 1.83 1.11 × 10−3 530k
GT 500 epochs 7.79 × 10−4 411.78± 1.83 7.90 × 10−4 530k
FNO1d 500 epochs 2.47× 10−3 369.13 ± 1.81 2.40× 10−3 549k
MWO 500 epochs 1.86× 10−3 ? ? 501k
XD 500 epochs 9.9× 10−3 ? ? ?

2109.13459
2103.15798

How about traditional NLP tasks?

Dataset: IWSLT14 De-En, translating German to English, train
samples: 160, 239, valid samples 7, 283, test samples 6, 750.

Training loss: standard word (token)-wise cross entropy.

Evaluation metric: BLEU (bilingual evaluation understudy) score.

Best BLEU on test set after 20 epochs, classic Transformer: 33.56;
Galerkin projection inspired tweaks: 33.94.

Encoder changed to
Galerkin projection type
layer normalization,
softmax unchanged.

New initialization tweaks.

Decoder unchanged.

Acknowledgments

We would like to thank the reviewers and the area chair.

Dr. Long Chen (UC Irvine) for sharing a blog post which directly
results the conceiving of this paper, sharing lecture notes about graph
theory, open-sourcing the elegant vectorization of finite element
methods in that inspires us to re-interpret the attention mechanism.

Dr. Ari Stern (WUSTL) for the help during COVID-19.

Dr. Ruchi Guo (UC Irvine) and Dr. Yuanzhe Xi (Emory) for the
invaluable feedback on the numerical experiements.

Mr. Zongyi Li (Caltech) for sharing an early dev code to verify our
re-implementation in the new PyTorch fft interface and comments on
Burgers’ equation’s viscosity.

Joel Schlosser (facebook) for reviewing our code contributions to be
incorporated into PyTorch’s Transformer module.

The PyTorch community on GitHub for selflessly code sharing.

