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Motivation: high-dimensional asymptotics

Exact formulas for the performance of benchmark models
in random design, high-dimensional setting

• quantitative theory for simple models (logistic regression, . . . )
• difficult to extend to deep learning/elaborate feature maps
• simple models sometimes capture deep learning phenomenology

Need for tractable, realistic surrogate models for deep
learning/complex feature maps

Ingredients for a surrogate model

• learning architecture
ridge regression, support vector machine...

• data/feature model
i.i.d. Gaussian with general covariance...

• training algorithm
Not in this work, we directly focus on estimators.

Examples

• Instances of ridge regression with i.i.d. coordinates capture the
so-called double descent phenomenon

• GAN data concentrates to Gaussian mixtures
•Convex Generalized Linear Models (GLM) with correlated
Gaussian designs capture a wide range of single task regression
problems, with structured data/feature maps

Objective

Can we have a realistic benchmark for multiclass
classification problems?

Contributions

• Study classification of a high-dimensional K-Gaussian
mixture with a convex GLM

•Generic means and covariances for the clusters
• Exact asymptotic distribution of the estimator
• Study of both random design and real data problems

The generative model: a K-Gaussian mixture

Consider the Gaussian mixture density with K cluster {Ck}16k6K :

P(x, y) =
K∑
k=1

ykρkN (x |µk ,Σk ) , (1)

• means µk ∈ Rd , covariances Σk ∈ Rd×d positive definite.
• cluster membership ρk ∈ [0, 1] with

∑
k ρk = 1.

• labels y ∈ {ek}k∈[K] are one-hot-encoded:
x ∈ Ck ⇔ yi = eik ≡ δik.

Dataset obtained sampling n pairs (xν , yν)ν∈[n] from Eq. (1).
We denote X = (xνi )ν,i ∈ Rn×d .

The learning task

Learn K separating hyperplanes in Rd: W? ∈ RK×d

The learning method: a convex GLM

Estimator obtained by minimising the empirical risk:

R(W,b) ≡
n∑
ν=1

`

(
yν ,

Wxν√
d

+ b
)
+ λr (W), (2)

(W?,b?) ≡ argmin
W∈RK×d ,b∈RK

R(W,b) , (3)

• W ∈ RK×d ,b ∈ RK are the weights and bias to be learned;
• ` convex loss and regularisation function (e.g., least-squares or
logistic loss);

• r convex regularisation functions (e.g., `2 or `1 penalty).

Goal: asymptotic properties of W?

High-dimensional limit: n, d →∞ with fixed α = n/d
We characterise the asymptotic distribution of the estimator (W?,b?).

Notation: If G = (Gki)ki ∈ RK×d ,
A = (Aki k′i′)ki k′i′ ∈ RK×d ⊗ RK×d , then
G� A =

∑
ki GkiAki k′i′ ∈ RK×d . Moreover

√
A is the tensor such

that A =
√
A�
√
A.

Main result: exact asymptotics

• Let ξk∈[K] ∼ N (0, IK ) be collection of K -dimensional standard
normal vectors independent of other quantities;

• let {Ξk} a set of K matrices, Ξk ∈ RK×d , with i.i.d. standard
normal entries, independent of other quantities;

• let Z? = 1√
d
W?X ∈ RK×n.

Under mild feasibility and regularity assumptions, for any pseudo-
Lispchitz functions φ1 : RK×d → R,φ2 : RK×n→ R:
φ1(W?) P−−−−−−→

n,d→+∞
EΞ [φ1(G)] , φ2(Z?)

P−−−−−−→
n,d→+∞

Eξ [φ2(H)] ,

where we have introduced the proximal for the loss:
hk = V1/2

k Prox
`(ek ,V

1/2
k •)

(V–1/2
k ωk) ∈ RK

ωk ≡ mk + b +Q1/2
k ξk ,

and H ∈ RK×n is obtained by concatenating each hk, ρkn times.
We have also introduced the matrix proximal G ∈ RK×d :

G =
√
A� Proxr(

√
A�•)(

√
A� B), A–1 ≡

∑
k

V̂k ⊗Σk ,

B ≡
∑
k

(
µkm̂

>
k + Ξk �

√
Q̂k ⊗Σk

)
.

The collection of parameters (Qk ,mk ,Vk , Q̂k , m̂k , V̂k)k∈[K] is given
by the fixed point of the following self-consistent equations:

Qk = 1
dEΞ[GΣkG>]

mk = 1√
d
EΞ[Gµk]

Vk = 1
dEΞ

[(
G�

(
Q̂k ⊗Σk

)–12 � (IK ⊗Σk)
)

Ξ>k

]

Q̂k = αρkEξ

[
fkf>k

]
V̂k = –αρkQ

–12
k Eξ

[
fkξ>

]
m̂k = αρkEξ [fk]

Moreover
• fk ≡ V–1

k (hk – ωk);
• b? is such that

∑
k ρkEξ [Vkfk] = 0.

Important remarks

• Very generic statement.
• Proximal operators are easy to compute, summarize the effect of
loss and penalty.

• Greatly simplifies with assumptions on covariances, separability of
functions...

• In most cases reduces to low/one dimensional statement.

Sketch of proof

We use an approximate message passing iteration (AMP)

• AMP are iterations with exact asymptotics at each time step: the
state evolution equations.

• Design an AMP sequence such that its fixed point matches the
solution to Eq.(2)

• Find a converging trajectory (convexity is helpful).
• Use the fixed point of the state evolution equations.
Here a specific, block operating ("spatially coupled") AMP is used to

handle the block covariance structure
Training and generalization error

• Average training loss

ε` =
1
n

n∑
ν=1

`

(
yν ,

W?xν√
d

+ b?
)

n→+∞−−−−→
α=n/d

K∑
k=1

ρkEξ[`(ek ,hk)].

• Average training error εt and generalisation error εg:

εt =
1
n

n∑
ν=1

I
[
yν 6= ŷ

(
W?xν√

d
+ b?

)]
n→+∞−−−−→
α=n/d

1 –
K∑
k=1

ρkEξ[ŷk(hk)],

εg = E∗
[
I
[
y∗ 6= ŷ

(
W?x∗√

d
+ b?

)]]
n→+∞−−−−→
α=n/d

1 –
K∑
k=1

ρkEξ[ŷk(hk)],

where (x∗, y∗) is a new sample from Eq. (1), and ŷk(x) = I(max
κ

xκ = xk).

Application: synthetic dataset

• Multiclass logistic regression with ridge penalty.
• Effect of sample complexity, number of clusters and regularisation
strength is studied.

• Recover and extend previous results on separability transition.
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Figure: Gaussian means and Σk ≡ Σ = 1/2Id . (Left) Generalisation error εg (top)
and training error εt (bottom) as function of α at λ = 10–4. Theoretical predictions
(full lines) are compared with the results of numerical experiments (dots).
Dash-dotted lines of the corresponding color represent, for comparison, the
Bayes-optimal error. (Right) Dependence of the generalisation error on the
regularization λ for K = 3 and Σ = 1/2Id , ρk = 1/K

Application: correlated sparse mixture

• model with strong and weak features
• sparse means µk ∈ Rd with sparsity ρ ∈ [0, 1].
• diagonal covariance Σij = σiδij, with σi ∈ {∆1,∆2}.
• high/low σi aligned with non-zero components of means, i.e.

P(µ,σ) =
d∏
i=1

{
ρN (µi|0, 1)δσi,∆1 + (1 – ρ)δµiδσi,∆2

}
. (4)

Binary classification on this model, with `1/`2 penalty
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Figure: Two-dimensional projection of the Gaussian mixture introduced via Eq. (4) in
which the sparse directions of the means are correlated with the weak/strong
directions in the data. (Right) Fraction of non-zero elements of the lasso estimator
(top) and optimal regularisation strength (bottom) as a function of α = n/d , for
varying ∆1/∆2, at fixed sparsity ρ = 0.1.
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Figure: Performance of ridge (blue) and lasso (orange) estimators at optimal
regularisation strength λ? and for different values of ∆1/∆2. Full lines denote the
theoretical prediction, and dots denote finite instance simulations with d = 1000.
Above a certain sample complexity α, we can identify two regimes: a) a ∆1/∆2 . 1
regime in which the `1 penalty improves significantly over `2; b) a ∆1/∆2 & 1 regime
in which the performance is similar.

Application: real datasets

• Binary classification with the logistic loss on MNIST/Fashion-MNIST.
• Comparison between the estimator obtained with real data and a
synthetic (Gaussian) approximation with matching covariances.

•Real learning curve is captured by the synthetic one feeded
with real-data covariance matrices.
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Figure: Generalisation error and training loss on MNIST with λ = 0.05 (left) and on
Fashion-MNIST with λ = 1 (right)
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