Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimension
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Application: correlated sparse mixture

ivation: high-di ' ' The learning method: a convex GLM
Motivation: high-dimensional asymptotics g Important remarks |
» model with strong and weak features
Exact f(.)rmulas for th? perf(.)rmaflce Of_ benchma.lrk models Estimator obtained by minimising the empirical risk: = Very generic statement. = Sparse means [ty € R with sparsity p € [0, 1].
in random design, high-dimensional setting _ _ , _ _
X o (o W x X \ » Proximal operators are easy to compute, summarize the effect of = diagonal covariance X.j; = 00;;, with o; € {A1, Az},
= quantitative theory for simple models (logistic regression, ... RAW. b) = 21 Y Vd * + Ar (W), loss and penalty. « high/low o; aligned with non-zero components of means, i.e.
V= . P . . . .-
= difficult to extend to deep learning/elaborate feature maps (W*, b*) = argmin  R(W, b), " fGreat_Iy simplifies with assumptions on covariances, separability of d
» simple models sometimes capture deep learning phenomenology WeRKxd pcRK unctions... P(u, o) = H {PN(M:‘O 1)5(; A, +(1- P)5u,5a,,A2} (4)
= In most cases reduces to low/one dimensional statement. i=1
Kxd K - : .
Need for tractable, realistic surrogate models for deep * WeRPT%, b e R™ are the weights and bias to be learned;
learning /complex feature maps =/ convex loss and regularisation function (e.g., least-squares or Sketch of proof Binary classification on this model, with /1/¢, penalty
logistic loss); -
= r convex regularisation functions (e.g., £, or {1 penalty). We use an approximate message passing iteration (AMP) s

<
w

Ingredients for a surrogate model « AMP are iterations with exact asymptotics at each time step: the

state evolution equations.

Goal: asymptotic properties of W*

» learning architecture

fraction non-zero
o o
— N

— Ny/D; = — Ny/D; =
— N/A, = 025 — N/DN, =

» Design an AMP sequence such that its fixed point matches the
High-dimensional limit: n,d — oo with fixed o = n/d solution to Eq.(2)

ridge regression, support vector machine...
075

+ data/feature model We characterise the asymptotic distribution of the estimator (W™, b*). Find - - v i< heloful 5
i.i.d. Gaussian with general covariance... * Find a converging trajectory (ConveXIty IS Nelptu ) -
. trainine aleorithm » Use the fixed point of the state evolution equations. °
_ g_ 5 _ _ Notation: If G = (Gki)ki - RKXd, . _ ) _ _ 0.0 | | | | |
Not in this work, we directly focus on estimators. A= (Ap )7 € rKxd 2 RKXd then Here a specific, block operating ("spatially coupled") AMP is used to 00 05 1:ample cljmplexit;() 25 30
I I ! : :
GOA=) 1:GLiAivi € RK*d Moreover VA is the tensor such handle the block covariance structure Figure: Two-dimensional projection of the Gaussian mixture introduced via Eq. (4) in
Examples that A = VA & VA. Training and generalization error which the sparse directi(ons of ;che means are correlated with the weak /strong
———————————————————————————————————————————————————————————————————————— (17ECti0oNs in the data. (Right) Fraction of non-zero elements of the lasso estimator
. . (top) and optimal regularisation strength (bottom) as a function of « = n/d, for
« Instances of ridge regression with i.i.d. coordinates capture the Main result: exact asymptotics » Average training loss varying A1/, at fixed sparsity p = 0.1.
so-called double descent phenomenon
n K
. . . ] _ 1 * oV
= GAN data concentrates to Gaussian mixtures = Let Ereriy ~ N(0, 1) be collection of K-dimensional standard €)= — Zg (yV) W\/i( 4 b*) n—+00, ZpkES[aek’ h)]. — — —
. .. . n — w =\, =\, =
- Convex Generalized Linear Models (GLM) with correlated normal vectors independent of other quantities; d a=nd o &\ L o
Gaussian designs capture a wide range of single task regression « let {=} a set of K matrices, E; € RKXd with i.i.d. standard = Average training error ¢; and generalisation error €g: . _ v L
problems, with structured data/feature maps normal entries, independent of other quantities; p 0
x 1 \k Kxn Wx” n—+00 . o ' e ——
let 27 - \/?!W XcR ' ZH { ( Vd +b )} oz—n/d> 1_ZpkE£[Yk(hk)]> 5 0s. | ¢ ridge ¢ lasso [ """" T
Objective Under mild feasibility and regularity assumptions, for any pseudo- k,j 202 e |
. . . *_ _k =02 1 ————— ]
Lispchitz functions ¢1 : RKXd 5 R ¢, : RKX1 5 R: s =E, |I|y* % W7x L b n—+00, . _ Z Ee[§(hy)] £ ﬁ UV’
Can we have a realistic benchmark for multiclass p p g=Fx MY 7Y Vd a=n/d PREEY IO, 001 - _
et e H1 (W) E=[01(G)], ¢2(Z) > g [2(H)] k=1 o 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5
classification problems? 1 = L1 2 § 172 ’ .
n,d —>+oo n,d—+00 K%y - . sample complexity
| _ where (x*, y*) is a new sample from Eq. (1), and y;(x) = I(max x; = x).
where we have introduced the proximal for the loss: K Figure: Performance of ridge (blue) and lasso (orange) estimators at optimal
ul)2 ~1/2 K . . . regularisation strength A* and for different values of A¢/A,. Full lines denote the
Contributions hk B Vk Proxf( VV2 )(V wk) c R Appllcatlon. Synthet'c dataset theoretical prediction, and dots denote finite instance simulations with d = 1000.
W =my + b -+ szf Ab<.>ve 2 cert.ain sample comp|e>_<ity Q, we can .identify two regimes: a) a Aq/A, §_1
. Studv classification of a hich-dimensional K-Gaussian « Multiclass logistic regression with ridge penalty. regime in which the /1 penalty improves significantly over ¢5; b) a A1/Ay 2 1 regime
J 5 and H € RK*" is obtained by concatenating each hy, p,n times. - . in which the performance is similar.

» Effect of sample complexity, number of clusters and regularisation
strength is studied.

mixture with a convex GLM | | | K d
We have also introduced the matrix proximal G € R"**¢:

= Generic means and covariances for the clusters

Application: real datasets

» Exact asymptotic distribution of the estimator G=vVA® Proxr(\/K@.)(\/K ® B), Al = Z\A,k 23, » Recover and extend previous results on separability transition.
- Study of both random design and real data problems k . » Binary classification with the logistic loss on MNIST /Fashion-MNIST.
N — A ) R — —4 . . . .
B = Z (ukmz + =, O \/Qk ® Zk> : 5 0.65 - j\\_ 18_2 = Comparison between the estimator obtained with real data and a
_ _ _ GL) T - . . . . . . .
The generative model: a K-Gaussian mixture k A A 06 0.60. 3 —10-1 synthetic (Gaussian) approximation with matching covariances.
The collection of parameters (Qy, my, Vi, Qy, my, Vk)ke[K] is given = 5 0 cx — A=1 » Real learning curve is captured by the synthetic one feeded
Consider the Gaussian mixture density with K cluster {Cp.}1< ek by the fixed point of the following self-consistent equations: %0.4- E | —— Bayes optimal with real-data covariance matrices.
IR v o 0.50
K r - 3 g
Qk —EE[GE/(G ] 9991 .8 = 0790 — 0.104 —
P(x,y) = Z ViPN (X | X)) s (1) d1 Gy . s 04 5020 ) lgﬁfhrﬁm | ) ;Sifhztlc
= — l:! Q 0]
k=1 < M \/_ =Lk . $ 0.40 80-15‘ »  MNIST 0.051 o Fashion-MNIST
A . O 0
- means p; € RY, covariances X € RY%9 positive definite. Vi = HEE {(G © (Qk & Ek) ? O (Ik ® Zk)> E 3 0.2 0.35 7 N - —
(@) . n 0.4 :
= cluster membership py € [0,1] with ), pg = 1. > - E 0.30 S 04
= (] . T o A
- labels y € {ej} k] are one-hot-encoded: Q= apilie [fkfk} 5 0.0 -203
- . _1 T ' ' ' 503 0.2
X € C < yi = €k = Ojk: < Vi =-apQ E¢ {fk‘ST} ’ 2sam|ol4e comglexity8 ’ ’ sample cimplexity v : ] T
. . o 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Dataset obtained sampling n pairs (x”,y )VE[n] from Eq. (1) m = CVIOkEﬁ (1] _ _ o sample complexity sample complexity
We denote X = (xV), : € Rnxd \ Figure: Gaussian means and Xy = ¥ = 1/2l4. (Left) Generalisation error €4 (top)
17 ] Moreover and training error ¢; (bottom) as function of a at A = 107 Theoretical predictions Figure: Generalisation error and training loss on MNIST with A = 0.05 (left) and on
The Iearnmg task N1 _ (full lines) are compared with the results of numerical experiments (dots). Fashion-MNIST with A = 1 (right)
- fi = Vk (hk - wk)' Dash-dotted lines of the corresponding color represent, for comparison, the
* . . - . .
] ] d. N Kxd = b™ is such that kakE [Vifi] =0. Bayes-optimal error. (Right) Dependence of the generalisation error on the
Learn K separating hyperplanes in R%: W™ € R : regularization \ for K = 3 and X = 1/2l4, py = 1/K
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