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This would most likely kill off all the bacteria, but ...
by then the patient would already be dead.



John McCarthy's criticism of some expert systems in 1980s
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He point out that, this is because the expert rules lacked common sense and knowledge.

* The real-world knowledge is much more complex than the annotated rules.
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How to make the rules more expressive?

* Mine rules from large-scale knowledge < Pre-trained language models as

bases. knowledge bases.
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@ Find rules

x worked at the brokerage Morgan Stanley x is the founder and CEO of y
for about 11 years until 2005, when he and ‘ - the board of
some Morgan Stanley colleagues quit and S SSRMES OIS DAAC R Y

later founded the hedge fund vy

x is currently a venture capitalist at y



Previous rule mining methods for KBs/LMs

For knowledge bases
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Previous rule mining methods for KBs/LMs

For knowledge bases For language models (e.g. COMET)

* Knowledge livesin Training corpus: annotated rules

[ If personX goes to the mall, ]

Then personX intent to buy clothes.

)
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Bob /\’ LM
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e Rule « The patterns of learned rules are constrained

by the annotated rules.

° livesin 0 » GwaSBomlrLO The limits the expressiveness of the generated
rules.

Discover commonalities of a group of entities from the Learning rules from rules.
data




Open Rule Induction: Overview

* Discover commonalities as traditional KB-based methods.

* Let the language model “speak” the commonalities without
annotations.

Instantiation Inducted rules
Premise atom P(instance|premise) P(hypothesis|premise)
support
Steve Jobs is founder of Apple » XisCEOofy
x is founder of y - Bill Gates is founder of Microsoft x is a member of y

Edmund Berkeley is founder of ACM » x was the secretary of y




Open Rule Induction: Problem Formulation

- Given a premise atom (x,7,,y) and k, find top-k of 7, w.r.t. P(r|r;,)

P(rh‘rp) = Z P(rh‘ins, rp)P(inS|rp)
ins
* One key observation is that given ins, r, and r;, are independent.

P(rh|rp) = Z P(rplins) P(ins|r,)

ins =

Appcalibility instantiation



Open Rule Induction: Problem Formulation

* P(14|1p) = Xins P(rylins)

Premise atom

x is founder of y

P(ins|r,)

N

Y

Appcalibility Instantiation

Instantiation
P(instance|premise)

Steve Jobs is founder of Apple

- Bill Gates is founder of Microsoft

Edmund Berkeley is founder of ACM

support

Inducted rules
P(hypothesis|premise)
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X is CEO of y
x is @ member of y

x was the secretary of y



How to Compute P(ins|r,) and P(ry|ins) using LMs?

« With the language model, both probabilities can be computed through the
masked language modeling task P(Womgske>|W1, -, Wy).

* We use different language model for P(ins|r,) and P(ry|ins) .

 Following this strategy, we use Spacy to annotate entities and continue training
language models on Wikipedia and BookCorpus.

T

X y
Steve Jobs is the founder of Apple. Steve Jobs is the founder of Apple.
<mask> is the founder of <mask>. Steve Jobs <mask> Apple.

P(ins = (x,y)|r,) P(r,lins = (x,y))



Experiments: OpenRule155

 Manual constructed dataset: OpenRule155

* We collect 121 relations from all relations from 6 relationship extraction
datasets: Google-RE, TREx, NYT10, WIKI80, FewRel, SemEval, and

34 relations from YagoZ2.

BLEU-4 ROUGE-L METEOR

Our Dataset BLEU-1 BLEU-2 self-BLEU-2
Prompt L7777 3.65 0.48 18.65 12.94 86.63
Prompt (fine-tuned 20.95 7.58 0.86 2251 17.24 82.13
Comet 21.58 8.15 1.04 23.45 5.44 90.78
Orion - STS 44.92 20.24 1.21 49.72 39.68 89.84
Orion - train P(ins|r,) 15.85 3.11 0.00 32.91 13:19 90.29
Orion - train P(ry|ins) 19.17 3.05 0.07 34.99 10.30 83.54
Orion 45.41 21.29 1.30 50.37 40.41 90.94




More Examples of Generated Rules

Table 3: Effect of complex rule induction. Original sentence of Case 1: [X]’s emergence from
international isolation has been marked through improved and expanded relations with other nations
such as [Y], France, Japan, Sweden, and India. Case 2: His guitar work on the title track is credited
as what first drew [X] to him, who two years later invited allman to join him as part of [Y].

Case  Orion Comet
[X] has a long history of military cooperation with [Y]. <Causes>: personx.
[X] is the largest exporter of oil to [Y]. <HasProperty>: happy.
Case1l [X]’s economy is heavily dependent on [Y]. <MadeUpOf>: happy.
[X]’s foreign policy is based on its close relationship with [Y].  <isAfter>: happy.
[X] has been the largest exporter of uranium to [Y]. <isBefore>: happy.
[X], guitarist and singer of [Y]. <Causes>: talented.
[X] and his band [Y]. <HasProperty>: talented.
Case 2 [X] has been a fan of [Y]. <MadeUpOf>: talented.
[X] was a fan of [Y]. <isAfter>: talented.
[X] was a fan of the band [Y]. <isBefore>: persony.




Application: Relation Extraction

X : ...Their brothers, Matt and Andrew, as well as their
parents, Roger Mueller and Jill Shellabarger, are all actors...

 \We evaluate inducted rules on o1: Matt

02 : Andrew

. . Textual Description: {01} and {02} are - PER:SIBLINGS
relation extraction tasks. PER-SIBLINGS X P cotore ] w0 Y
Textual Description: {o1} was born in the
PER:CITY_OF_BIRTH X €7 city of {oz}ﬂ \x, ra)
: . u(x)
¢ We use EXpBERT tO add our Textual Description: X [SEP] {or}isa memberm I(x,rv) Classifier
ORG:MEMBER_OF organization of {03} i

explanation. e .

Explanation 1 X [SEP]

same parents m
v(x)
Explanation 2 X [SEP] {o1} works for {02} ﬂ I(x, e2)

Someone is married

Explanation n X [SEP] to {02}

Figure 2: Overview of our approach. Explanations as
well as textual descriptions of relations are interpreted
using BERT for a given z to produce a representation
which form inputs to our classifier.



Application: Relation Extraction

Spouse Disease
BERT 46.43 £ 0.84 40.20 £ 2.43
ExpBERT + annotated rules 76.04 = 0.47 56.92 1 0.82

ExpBERT + inducted open rules  76.05 = 0.52  57.68 4= 1.34

» By adding these rules to BERT, the effect can be significantly
iImproved.

* Our rule induction method is unsupervised.



Application: Relation Extraction

Spouse Disease
BERT 46.43 :0.84 40.20 & 2.43
ExpBERT + annotated rules 76.04 = 0.47 56.92 1 0.82

ExpBERT + inducted open rules  76.05 = 0.52  57.68 4= 1.34

» By adding these rules to BERT, the effect can be significantly

iImproved.

* These automatically inducted rules even slightly outperformed

the manually annotated rules.



Application: Error Identification in LMs

* Some rules that defy human commonsense are incorrectly

iInducted.

* This is actually due to the bias of the language model.

Inducted rule: [X] is the politician of [Y]. |:> [X] was the founder and president of [Y].
Identified error: LMs assume that politician is always founder and president.

Reason: The training corpus description of politician has a disproportionate number of
founder and president entities that general members.



Thank you!



