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Knowledge Distillation in Object Detection

“ Compact object detectors

o One-stage methods
SSD, YOLO ...

o Two-stage methods
RCNN family with lightweight backbones
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Knowledge Distillation in Object Detection

¢ Detector-to-detector knowledge distillation
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Knowledge Distillation in Object Detection

¢ Detector-to-detector knowledge distillation

Teacher Student
}ﬁ m
\ \
()
AN\
— 70 R i . Y

(a) global feature adaptation
Chen et al. NeurlPS2017

4 NVIDIA



Knowledge Distillation in Object Detection

¢ Detector-to-detector knowledge distillation

Teacher Student

W D b e e

...........................

(a) global feature adaptation
Chen et al. NeurlPS2017

m

Pl'L

NVIDIA



Knowledge Distillation in Object Detection

¢ Detector-to-detector knowledge distillation
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Knowledge Distillation in Object Detection
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Knowledge Distillation in Object Detection
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Knowledge Distillation in Object Detection
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Knowledge Distillation in Object Detection
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Knowledge Distillation in Object Detection
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¢ Detector-to-detector knowledge distillation
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Knowledge Distillation in Object Detection

¢ Detector-to-detector knowledge distillation
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 Feature only, across architectures
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(b) positive feature imitation
Wang et al. CVPR2019
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Motivation

“ Inferior performance of the detection classification head
o Foreground-background classes imbalance

“* Localization error is one of the key errors for the compact detection
models
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Our Method:
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Our Method: Classifier Teachers

¢+ Dataset

Dger = {class_labels, bbores} D.is = {class_label}

for each image for each object from all images
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Our Method: Classifier Teachers

“ Training

84.00

82.00 80.30 80.41 80.81 8142 81.02 51-57
80.00 o o 50 7m0n ror N
Q 78.00 SRS 76.92 e : : : s
I 76.00 .28 T Heon e SR
T 74.00 P il 72.86 RS R
S 7200 i i e i
70.00 I e NP [onoso0es
68.00 ROR SRS SRR ORI
SSD + CE general + CEL general + FL general + CEL + FL
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112%x112 80.30 80.81 77.50 81.02

1224x%224 80.41 81.42 77.04 81.67

O The same classification teacher is used for all two-stage Faster RCNNs and one-stage
RetinaNets in our classifier-to-detector distillation method.
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Our Method: Knowledge Distillation for Classification

s+ Categorical cross-entropy loss
softmax probability
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Our Method: Knowledge Distillation for Classification
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Our Method: Knowledge Distillation for Localization

26

Student
Backbone

v
Student
Neck

v

+>Cls @D

Student Head

Box
Prediction
v/ «
, s ‘%
Y
09t Predicted

Object OP

Teacher |Classifier

Backbone | Teacher

Teacher
Feature

Distillation

Box &

Localization

Student
Feature

NVIDIA



Our Method: Knowledge Distillation for Localization
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% Spatial transformer

O Given a bounding box
By = (x1,y1,72,92)

0 Compute the transformer matrix

A, — [(mg—xl)/w 0 —1+ (21 + 22)/w
0 (y2—y1)/h =1+ (y1 +y2)/h

O Get the object region
Oy = fsr(Ag, 1, 5)

[ --inputimage
S -- grid sampling size
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Results on Compact Detectors
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Comparing to State-of-the-art Distillation
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Comparing to State-of-the-art Distillation
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More compact detectors

* FKD: Zhang et al. ICLR2021. Improve object detection with feature-based knowledge distillation: Towards accurate and efficient detectors.  gum -
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Analysis

“* Detection error analysis
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% Complementary nature of classification distillation and localization distillation.
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Analysis

Qualitative analysis
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Summary

“ Our classifier-to-detector distillation improves both the classification accuracy and
the localization ability of the student.

2 Our classifier-to-detector distillation achieves better performance than detector-to-
detector distillation.

»» Our work opens the door to a new approach to distillation beyond object detection:
Knowledge should be transferred not only across architectures, but also across
tasks.

Code is available @ github.com/NVIabs/DICOD/
Please check our paper for more details.
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https://github.com/NVlabs/DICOD/

