

Interpreting Representation Quality of DNNs for 3D Point Cloud Processing

Wen Shen^{b,*}, Qihan Ren^a, Dongrui Liu^a, Quanshi Zhang^{a,†}

^aShanghai Jiao Tong University, Shanghai, China ^bTongji University, Shanghai, China ^{*}This work was done when Wen Shen was an intern at Shanghai Jiao Tong University. [†]Correspondence

Analyze the **quality of representation** of DNNs for 3D point cloud processing

- Regional sensitivities
- Spatial smoothness
- Representation complexity

Regional sensitivities

(a) Comparison of six types of sensitivities of PointNet++.

(b) Visualization of regional sensitivities of PointNet++.

Disentangle the overall model vulnerability into six types of regional sensitivities.

Spatial smoothness

Adjacent regions are supposed to have similar attributions to the network output.

(c) The smoothness of regional attributions.

Spatial smoothness

Adjacent regions are supposed to have similar attributions to the network output.

(c) The smoothness of regional attributions.

Representation complexity

Evaluate the complexity of 3D structures that can be encoded in a DNN.

low-order interaction:collaborations among regions (i, j)and a few other regionscollaboration

i, j) **high-order interaction:** collaborations among regions (*i*, *j*) and **massive** other regions

(d) Illustration of the multi-order interaction.

> Preliminaries: Shapley values

- A unique unbiased approach to fairly allocate the total reward to each player^[1]
- Satisfies axioms of *linearity*, *nullity*, *symmetry*, and *efficiency*^[2]

In 3D point cloud processing \rightarrow Game

- Input point cloud regions \rightarrow players
- Scalar output of the DNN \rightarrow total reward of the players in the game

[1]Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–317, 1953.
 [2] Robert J Weber. Probabilistic values for games. The Shapley Value. Essays in Honor of Lloyd S. Shapley, pages 101–119, 1988.

The numerical attribution of the *i*-th region can be estimated by the Shapley value $\phi(i)$.

$$\phi(i) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

- N = {1,2,...,n} denotes input variables (point cloud regions)
 v(S) = log ^p/_{1-p}, where p = p(y = y^{truth}|x_S)
- x_S denotes the point cloud only containing regions in $S \subseteq N$

The rotation/translation/scale/local-structure sensitivity of region *i* is quantified as the range of changes of this region's attribution $\phi(i)$ among all potential transformations $\{T\}$ of the rotation/translation/scale/local 3D structure.

$$\forall i \in N = \{1, 2, \cdots, n\}, \quad a_i(x) = \frac{1}{\mathbb{Z}} (\max_T \phi_{x'=T(x)}(i) - \min_T \phi_{x'=T(x)}(i))$$
$$Z = \mathbb{E}_T [\sum_{i \in N} |\phi_{x'=T(x)}(i)|] \text{ is computed for normalization.}$$

sensitivity =
$$\mathbb{E}_{x \in X} \left[\mathbb{E}_{i \in N} [a_i(x)] \right]$$

$$\forall i \in N = \{1, 2, \cdots, n\}, \quad a_i(x) = \frac{1}{Z} (\max_T \phi_{x'=T(x)}(i) - \min_T \phi_{x'=T(x)}(i))$$

- Rotation sensitivity: enumerate all rotation angles $\boldsymbol{\theta} = [\theta_1, \theta_2, \theta_3]^{\top}$ from the range of $[-\frac{\pi}{4}, \frac{\pi}{4}]$, and obtain a set of rotated point clouds $\{x' = T_{\text{rotation}}(x|\boldsymbol{\theta})\}$.
- Translation sensitivity: enumerate all translations $\Delta x = [\Delta x_1, \Delta x_2, \Delta x_3]^{\top}$ from the range of [-0.5,0.5], and obtain a set of translated point clouds $\{x' = T_{\text{translation}}(x|\Delta x) = x + \Delta x\}.$
- Scale sensitivity: enumerate all scales α from the range of [0.5,2], and obtain a set of scaled point clouds { $x' = T_{scale}(x|\alpha) = \alpha x$ }.

> Regional sensitivities

$$\forall i \in N = \{1, 2, \cdots, n\}, \quad a_i(x) = \frac{1}{Z} (\max_T \phi_{x'=T(x)}(i) - \min_T \phi_{x'=T(x)}(i))$$

• Rotation sensitivity: enumerate all rotation angles $\boldsymbol{\theta} = [\theta_1, \theta_2, \theta_3]^{\mathsf{T}}$ from the

range of $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, and obtain a set of rotated point clouds $\{x' = T_{\text{rotation}}(x|\theta)\}$.

- Translation sensitivity: enumerate all translations $\Delta x = [\Delta x_1, \Delta x_2, \Delta x_3]^{\top}$ from the range of [-0.5,0.5], and obtain a set of translated point clouds $\{x' = T_{\text{translation}}(x|\Delta x) = x + \Delta x\}.$
- Scale sensitivity: enumerate all scales α from the range of [0.5,2], and obtain a set of scaled point clouds { $x' = T_{scale}(x|\alpha) = \alpha x$ }.

> Regional sensitivities

$$\forall i \in N = \{1, 2, \cdots, n\}, \quad a_i(x) = \frac{1}{Z} (\max_T \phi_{x'=T(x)}(i) - \min_T \phi_{x'=T(x)}(i))$$

• Rotation sensitivity: enumerate all rotation angles $\boldsymbol{\theta} = [\theta_1, \theta_2, \theta_3]^{\mathsf{T}}$ from the

range of $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, and obtain a set of rotated point clouds $\{x' = T_{\text{rotation}}(x|\theta)\}$.

- Translation sensitivity: enumerate all translations $\Delta x = [\Delta x_1, \Delta x_2, \Delta x_3]^{\top}$ from the range of [-0.5,0.5], and obtain a set of translated point clouds $\{x' = T_{\text{translation}}(x|\Delta x) = x + \Delta x\}.$
- Scale sensitivity: enumerate all scales α from the range of [0.5,2], and obtain a set of scaled point clouds { $x' = T_{\text{scale}}(x|\alpha) = \alpha x$ }.

smooth

(b) Illustration of the spatial smoothness.

[1]Guinard and Landrieu. Weakly supervised segmentation-aided classification of urban scenes from 3d lidar point clouds. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-1/W1:151–157, 2017.

[2]Demantké et al. Dimensionality Based Scale Selection in 3d LIDAR Point Clouds. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3812:97–102, 2011.

non-s

$$Z_{\text{smooth}} = \mathbb{E}_T[|v_{x'}(N) - v_{x'}(\emptyset)|_{x'=T(x)}]$$

is computed for normalization.

[1]Wu et al. 3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015. [2]Yi et al. A scalable active framework for region annotation in 3d shape collections. SIGGRAPH Asia, 2016.

Representation complexity

Input regions of a DNN do not work individually, but collaborate with each other to construct a specific 3D structure for inference.

(b) Visualizing the interaction of the *m*-th order.

m-th order interaction^[1] between the regions *i* and *j*:

 $I^{(m)}(i,j) = \mathbb{E}_{S \subseteq N \setminus \{i,j\}, |S|=m} \left[v(S \cup \{i,j\}) - v(S \cup \{i\}) - v(S \cup \{j\}) + v(S) \right]$

Average strength of the *m*-th order interactions:

$$I^{(m)} = \mathbb{E}_{x \in X} \left[\left| \mathbb{E}_{i,j} [I_x^{(m)}(i,j)] \right| \right]$$

[1]Zhang et al. Interpreting and boosting dropout from a game-theoretic view. In ICLR, 2020.

Explaining the regional sensitivity of DNNs

Rotation robustness was the Achilles' heel of classic DNNs for 3D point cloud processing.

All DNNs were sensitive to rotations except for the adversarially trained GCNN.

PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN

PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN

Explaining the regional sensitivity of DNNs

Table 1. Average consistivities over all regions among all comples

Explaining the regional sensitivity of DNNs

PointNet failed to encode local 3D structures.

PointNet did not encode the information of neighboring points/regions.

IN GCNN adv-GCNN PointNet PointNet++ PointConv DGCNN GCNN adv-GCNN

Explaining the regional attributions

Most DNNs usually failed to extract rotation-robust features from 3D points at edges/corners. 16

Pearson correlation coefficients between regional attributions and sensitivities.

	Models	Μ	ModelNet10 dataset			ShapeNet part dataset			
	Widdens	rotation sensitivity	translation sensitivity	scale sensitivity	rotation sensitivity	translation sensitivity	scale sensitivity	_	
	n (.) r .			0 170 1 0 101			0 500 + 0 000	_	
ic average absolute value of regional attribution 6 0 0 - 2 - 0 0 - 5 - 0 0 - 0 0 - 0	0.1 0.2 0.3 rotation sensitivity	0.8 0.5 0.1 0.2 0.1 0.2 0.3 rotation sensitivity	undituditation of the second additional of the	samp NOB	le 1 sample 2	sample 3 sample 4	4 sample 5 at	high tribution ⁶ .4	

Pearson correlation coefficients between regional attributions and sensitivities.

Models	ModelNet10 dataset			ShapeNet part dataset			
	rotation sensitivity	translation sensitivity	scale sensitivity	rotation sensitivity	translation sensitivity	scale sensitivity	
			0 470 1 0 1 0 1			0.500 + 0.055	

Explaining the spatial smoothness of DNNs

Table 3: The non-smoothness of attributions between adjacent regions.

Models	ModelNet10 dataset		ShapeNet part dataset		ShapeNet part dataset (removing the biased category)		
	rotation	translation	rotation	translation	rotation	translation	
PointNet	$0.071 {\pm} 0.039$	$0.029 {\pm} 0.017$	$0.025 {\pm} 0.009$	$0.016 {\pm} 0.005$	$0.025 {\pm} 0.010$	$0.015 {\pm} 0.003$	
PointNet++	$0.091 {\pm} 0.041$	$0.041 {\pm} 0.022$	$0.036 {\pm} 0.011$	$0.022{\pm}0.016$	$0.034{\pm}0.010$	$0.017 {\pm} 0.003$	
PointConv	$0.047 {\pm} 0.014$	$0.056{\pm}0.108$	$0.080{\pm}0.019$	$0.040 {\pm} 0.017$	$0.081 {\pm} 0.020$	$0.039{\pm}0.018$	
DGCNN	$0.071 {\pm} 0.024$	$0.031 {\pm} 0.010$	$0.047 {\pm} 0.019$	$0.026 {\pm} 0.017$	$0.044{\pm}0.017$	$0.021 {\pm} 0.005$	
GCNN	$0.083 {\pm} 0.026$	$0.034{\pm}0.012$	$0.050{\pm}0.019$	$0.027 {\pm} 0.010$	$0.049 {\pm} 0.020$	$0.025 {\pm} 0.008$	
adv-GCNN ¹	$0.029 {\pm} 0.012$	$0.030 {\pm} 0.013$	$0.054{\pm}0.110$	$0.056 {\pm} 0.114$	$0.022{\pm}0.008$	$0.023 {\pm} 0.008$	

¹ adv-GCNN denoted the adversarially trained GCNN.

Adversarial training increased the spatial smoothness of knowledge representations.

Explaining the spatial smoothness of DNNs

Adversarial training increased the spatial smoothness of knowledge representations.

Comparative studies

THANK YOU !