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Objective

2

Analyze the quality of representation of DNNs for 3D point cloud 

processing 

• Regional sensitivities

• Spatial smoothness

• Representation complexity
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Spatial smoothness
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Representation complexity
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• A unique unbiased approach to fairly allocate the total reward to each player[1]

• Satisfies axioms of linearity, nullity, symmetry, and efficiency[2]

In 3D point cloud processing → Game
• Input point cloud regions → players
• Scalar output of the DNN → total reward of the players in the game

[1]Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–317, 1953.
[2] Robert J Weber. Probabilistic values for games. The Shapley Value. Essays in Honor of Lloyd S. Shapley, pages 101–119, 1988.

… output

A network
six players

six input variables

A game reward

S v(S)
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The numerical attribution of the 𝑖-th region can be estimated by the
Shapley value 𝜙(𝑖).

• 𝑁 = 1,2, … , 𝑛 denotes input variables (point cloud regions)
• 𝑣 𝑆 = log !

"#!
, where 𝑝 = 𝑝(𝑦 = 𝑦$%&$'|𝑥()

• 𝑥( denotes the point cloud only containing regions in 𝑆 ⊆ 𝑁

the following two perspectives, i.e. the spatial smoothness of knowledge representations, and the
contextual complexity of 3D structures encoded by a DNN.

Preliminaries: quantifying the regional attribution using Shapley values. The Shapley value
was originally introduced in game theory Shapley [1953]. Considering a game with multiple players,
each player aims to pursue a high award for victory. The Shapley value is widely considered as a
unique unbiased approach that allocates the total reward to each player fairly, which satisfies axioms
of linearity, nullity, symmetry, and efficiency Weber [1988] as the theoretical foundation. Please
see our supplementary materials for details.

Given a point cloud with n regions1, N = {1, 2, · · · , n}, the Shapley value can be used to measure
the attribution of each input region. We can consider the prediction process of a DNN as a game
v, and each region in a point cloud as a player i. Let 2N def

= {S | S ✓ N} denote all the possible
subsets of N . Let xS denote the point cloud only containing regions in S, in which regions in N\S
are removed. For a DNN learned for multi-category classification, we use v(S) to denote the network
output given the input xS . v(S) is calculated as log p

1�p , where p = p(y = ytruth | xS) denotes the
probability of the ground-truth category given xS . Note that the number of input points for each
DNN is a fixed value. Therefore, in order to make the DNN successfully handle the point cloud xS

without regions in N\S, we reset coordinates of points in regions of N\S to the center of the entire
point cloud to remove the information of these points, instead of simply deleting these points Zheng
et al. [2019]2. In this way, the numerical attribution of the i-th region to the overall prediction score
is estimated by the Shapley value �(i), as follows.

�(i) =
X

S✓N\{i}

|S|!(n� |S|� 1)!

n!
(v(S [ {i})� v(S)), (1)

The computation of Equation (1) is NP-hard. Therefore, we use the sampling-based method in Castro
et al. [2009] to approximate �(i).

3.1 Quantifying the representation sensitivity of a DNN

To analyze the quality of knowledge representations of a DNN, we define different types of sensi-
tivities using the above regional attribution �(i). Specifically, we measure six types of sensitivities,
including the rotation sensitivity, translation sensitivity, scale sensitivity, and three types of sensitivity
to local 3D structures (edge-like structures, surface-like structures, and mass-like structures). Given
an input point cloud x, the Shapley value �(i) measures the attribution of region i to the network
output. The rotation/translation/scale/local-structure sensitivity of this region is quantified as the
range of changes of this region’s attribution �(i) among all potential transformations {T} of the
rotation/translation/scale/local 3D structure, as follows.

8 i 2 N = {1, 2, · · · , n}, ai(x) =
1

Z
(max

T
�x0=T (x)(i)�min

T
�x0=T (x)(i)), (2)

where Z = ET [
P

i2N |�x0=T (x)(i)|] is computed for normalization. Thus, the average sensitivity to
all potential transformations {T} among all input point clouds x 2 X is formulated as follows.

sensitivity = Ex2X

⇥
Ei2N [ai(x)]

⇤
(3)

In implementation, six types of sensitivities are computed as follows.

Rotation sensitivity: The metric of rotation sensitivity quantifies the vulnerability of the inference
caused by the rotation of 3D point clouds. Given an input point cloud x, we enumerate all rotations
✓ = [✓1, ✓2, ✓3]> from the range of [�⇡

4 ,
⇡
4 ], i.e. given ✓, we sequentially rotate the point cloud

around the three axes of the 3D coordinates system, thereby obtaining a set of new point clouds
{x0 = Trotation(x|✓)}.

Translation sensitivity: The metric of translation sensitivity quantifies the vulnerability of the
inference caused by the translation of 3D point clouds. Given an input point cloud x, we enumerate

1There are many ways to segment a 3D point cloud to regions. In our experiments, we first used the farthest
point sampling Qi et al. [2017a] to select n points from each point cloud as centers of n regions. Then, we
partitioned the point cloud to n regions by assigning each remaining point to the nearest center point among the
selected n center points.

2Please see our supplementary materials for more discussion about the resetting of absent points.

4
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The rotation/translation/scale/local-structure sensitivity of region i is 
quantified as the range of changes of this region’s attribution 𝜙(𝑖) among all 
potential transformations {T} of the rotation/translation/scale/local 3D 
structure.
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• Rotation sensitivity: enumerate all rotation angles 𝜽 = 𝜃!, 𝜃", 𝜃# $ from the 

range of [− %
& ,

%
&], and obtain a set of rotated point clouds {𝑥' = 𝑇()*+*,)-(𝑥|𝜽)}.

• Translation sensitivity: enumerate all translations Δ𝑥 = Δ𝑥!, Δ𝑥", Δ𝑥# $ from 

the range of [−0.5,0.5], and obtain a set of translated point clouds 

{𝑥' = 𝑇*(+-./+*,)- 𝑥 Δ𝑥 = 𝑥 + Δ𝑥}.

• Scale sensitivity: enumerate all scales 𝛼 from the range of [0.5,2], and obtain a set 

of scaled point clouds {𝑥' = 𝑇.0+/1 𝑥 𝛼 = 𝛼𝑥}.
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all potential transformations {T} among all input point clouds x 2 X is formulated as follows.

sensitivity = Ex2X
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Ei2N [ai(x)]
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(3)

In implementation, six types of sensitivities are computed as follows.

Rotation sensitivity: The metric of rotation sensitivity quantifies the vulnerability of the inference
caused by the rotation of 3D point clouds. Given an input point cloud x, we enumerate all rotations
✓ = [✓1, ✓2, ✓3]> from the range of [�⇡

4 ,
⇡
4 ], i.e. given ✓, we sequentially rotate the point cloud

around the three axes of the 3D coordinates system, thereby obtaining a set of new point clouds
{x0 = Trotation(x|✓)}.

Translation sensitivity: The metric of translation sensitivity quantifies the vulnerability of the
inference caused by the translation of 3D point clouds. Given an input point cloud x, we enumerate

1There are many ways to segment a 3D point cloud to regions. In our experiments, we first used the farthest
point sampling Qi et al. [2017a] to select n points from each point cloud as centers of n regions. Then, we
partitioned the point cloud to n regions by assigning each remaining point to the nearest center point among the
selected n center points.

2Please see our supplementary materials for more discussion about the resetting of absent points.
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the following two perspectives, i.e. the spatial smoothness of knowledge representations, and the
contextual complexity of 3D structures encoded by a DNN.

Preliminaries: quantifying the regional attribution using Shapley values. The Shapley value
was originally introduced in game theory Shapley [1953]. Considering a game with multiple players,
each player aims to pursue a high award for victory. The Shapley value is widely considered as a
unique unbiased approach that allocates the total reward to each player fairly, which satisfies axioms
of linearity, nullity, symmetry, and efficiency Weber [1988] as the theoretical foundation. Please
see our supplementary materials for details.

Given a point cloud with n regions1, N = {1, 2, · · · , n}, the Shapley value can be used to measure
the attribution of each input region. We can consider the prediction process of a DNN as a game
v, and each region in a point cloud as a player i. Let 2N def

= {S | S ✓ N} denote all the possible
subsets of N . Let xS denote the point cloud only containing regions in S, in which regions in N\S
are removed. For a DNN learned for multi-category classification, we use v(S) to denote the network
output given the input xS . v(S) is calculated as log p

1�p , where p = p(y = ytruth | xS) denotes the
probability of the ground-truth category given xS . Note that the number of input points for each
DNN is a fixed value. Therefore, in order to make the DNN successfully handle the point cloud xS

without regions in N\S, we reset coordinates of points in regions of N\S to the center of the entire
point cloud to remove the information of these points, instead of simply deleting these points Zheng
et al. [2019]2. In this way, the numerical attribution of the i-th region to the overall prediction score
is estimated by the Shapley value �(i), as follows.
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The computation of Equation (1) is NP-hard. Therefore, we use the sampling-based method in Castro
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✓ = [✓1, ✓2, ✓3]> from the range of [�⇡
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4 ], i.e. given ✓, we sequentially rotate the point cloud

around the three axes of the 3D coordinates system, thereby obtaining a set of new point clouds
{x0 = Trotation(x|✓)}.

Translation sensitivity: The metric of translation sensitivity quantifies the vulnerability of the
inference caused by the translation of 3D point clouds. Given an input point cloud x, we enumerate

1There are many ways to segment a 3D point cloud to regions. In our experiments, we first used the farthest
point sampling Qi et al. [2017a] to select n points from each point cloud as centers of n regions. Then, we
partitioned the point cloud to n regions by assigning each remaining point to the nearest center point among the
selected n center points.
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an input point cloud x, the Shapley value �(i) measures the attribution of region i to the network
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range of changes of this region’s attribution �(i) among all potential transformations {T} of the
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In implementation, six types of sensitivities are computed as follows.

Rotation sensitivity: The metric of rotation sensitivity quantifies the vulnerability of the inference
caused by the rotation of 3D point clouds. Given an input point cloud x, we enumerate all rotations
✓ = [✓1, ✓2, ✓3]> from the range of [�⇡
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4 ], i.e. given ✓, we sequentially rotate the point cloud

around the three axes of the 3D coordinates system, thereby obtaining a set of new point clouds
{x0 = Trotation(x|✓)}.

Translation sensitivity: The metric of translation sensitivity quantifies the vulnerability of the
inference caused by the translation of 3D point clouds. Given an input point cloud x, we enumerate

1There are many ways to segment a 3D point cloud to regions. In our experiments, we first used the farthest
point sampling Qi et al. [2017a] to select n points from each point cloud as centers of n regions. Then, we
partitioned the point cloud to n regions by assigning each remaining point to the nearest center point among the
selected n center points.

2Please see our supplementary materials for more discussion about the resetting of absent points.

4



Regional sensitivities

9

• Sensitivity to linearity (edge-like structures), sensitivity to planarity (surface-
like structures), and sensitivity to scattering (mass-like structures).

where 𝜆! ≥ 𝜆" ≥ 𝜆# are eigenvalues of the covariance matrix of a region’s points[1][2].
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Figure 2: (a) Visualization of increasing the linearity/planarity/scattering of all regions. (b) Visualiza-
tion of multi-order interactions.

all translations �x = [�x1,�x2,�x3]> from the range of [�0.5, 0.5] along the three axes of the 3D
coordinates system, thereby obtaining a set of new point clouds {x0 = Ttranslation(x) = x+�x}.

Scale sensitivity: The metric of scale robustness quantifies the vulnerability of the inference caused
by the scale of 3D point clouds. Given an input point cloud x, we enumerate all scales ↵ from the
range of [0.5, 2], thereby obtaining a set of new point clouds {x0 = Tscale(x) = ↵x}.

Then, we focus on other three sensitivity metrics for three types of local 3D structures, i.e. sensitiv-
ity to linearity (edge-like structures), sensitivity to planarity (surface-like structures), and sen-
sitivity to scattering (mass-like structures). According to Guinard and Landrieu [2017], Demantké
et al. [2011], the significance of a point cloud to be edge-like structures/surface-like structures/mass-
like structures is defined as follows.

linearity =
�1 � �2

�1
; planarity =

�2 � �3

�1
; scattering =

�3

�1
; (4)

where �1 � �2 � �3 denote three eigenvalues of the covariance matrix of a region’s points.

Without loss of generality, we take the linearity for example to introduce the way to enumerate a
region’s all values of linearity. Given a region, we use the gradient ascent/descent method to modify
the 3D coordinates p 2 R3 of each point in this region, so as to increase/decrease the linearity, i.e.
pnew = p + ⌘ @linearity

@p . As Fig. 2 (a) shows, we enumerate all regions’ linearity at the same time.
The enumeration is implemented under the following two constraints. (1) Each value of �1 needs
to be within the range of �1 ± �, so as the �2 and �3. (2) kpfinal � porik  d, where k·k denotes
the L2-norm. In this way, we obtain a set of point clouds with different degrees of local edge-like
structures. In real implementation, we set ⌘ = 0.001, � = 0.003, and d = 0.03.

3.2 Quantifying the spatial smoothness of knowledge representations

Besides the analysis of representation sensitivity, we also evaluate the spatial smoothness of feature
representations encoded by a DNN. Because most benchmark 3D datasets Wu et al. [2015], Yi et al.
[2016] only contain objects with simple 3D structures (see Fig. 1 (c)), except for special regions (e.g.
edges), most adjacent regions of such simple objects usually have similar local 3D structures (e.g.
surfaces). Therefore, most adjacent regions are supposed to have similar regional attributions, i.e.
high smoothness. In this way, high spatial smoothness indicates reliable feature representations. We
quantify the smoothness of the regional attribution between neighboring regions, as follows.

non-smoothness = Ex2XETEiEj2N (i)

h |�x0(i)� �x0(j)|
Zsmooth

���
x0=T (x)

i
(5)

where N (i) denotes a set of nearest point cloud regions (which are determined by the ball-query
search Qi et al. [2017b]) of region i; Zsmooth = ET [|vx0(N) � vx0(;)|x0=T (x)] is computed for
normalization; vx0(N) denotes the network output given the entire point cloud x0, and vx0(;) denotes
the network output when we mask all regions in x0 by setting all points to the center coordinates of
the point cloud.

3.3 Quantifying the interaction complexity of a DNN

In addition, we also quantify the representation complexity of a DNN, i.e. the complexity of 3D
structures encoded by a DNN. To this end, the 3D structures encoded by a DNN is represented using
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where �1 � �2 � �3 denote three eigenvalues of the covariance matrix of a region’s points.

Without loss of generality, we take the linearity for example to introduce the way to enumerate a
region’s all values of linearity. Given a region, we use the gradient ascent/descent method to modify
the 3D coordinates p 2 R3 of each point in this region, so as to increase/decrease the linearity, i.e.
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@p . As Fig. 2 (a) shows, we enumerate all regions’ linearity at the same time.
The enumeration is implemented under the following two constraints. (1) Each value of �1 needs
to be within the range of �1 ± �, so as the �2 and �3. (2) kpfinal � porik  d, where k·k denotes
the L2-norm. In this way, we obtain a set of point clouds with different degrees of local edge-like
structures. In real implementation, we set ⌘ = 0.001, � = 0.003, and d = 0.03.

3.2 Quantifying the spatial smoothness of knowledge representations

Besides the analysis of representation sensitivity, we also evaluate the spatial smoothness of feature
representations encoded by a DNN. Because most benchmark 3D datasets Wu et al. [2015], Yi et al.
[2016] only contain objects with simple 3D structures (see Fig. 1 (c)), except for special regions (e.g.
edges), most adjacent regions of such simple objects usually have similar local 3D structures (e.g.
surfaces). Therefore, most adjacent regions are supposed to have similar regional attributions, i.e.
high smoothness. In this way, high spatial smoothness indicates reliable feature representations. We
quantify the smoothness of the regional attribution between neighboring regions, as follows.
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where N (i) denotes a set of nearest point cloud regions (which are determined by the ball-query
search Qi et al. [2017b]) of region i; Zsmooth = ET [|vx0(N) � vx0(;)|x0=T (x)] is computed for
normalization; vx0(N) denotes the network output given the entire point cloud x0, and vx0(;) denotes
the network output when we mask all regions in x0 by setting all points to the center coordinates of
the point cloud.

3.3 Quantifying the interaction complexity of a DNN

In addition, we also quantify the representation complexity of a DNN, i.e. the complexity of 3D
structures encoded by a DNN. To this end, the 3D structures encoded by a DNN is represented using
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Figure 2: (a) Visualization of increasing the linearity/planarity/scattering of all regions. (b) Visualiza-
tion of multi-order interactions.

all translations �x = [�x1,�x2,�x3]> from the range of [�0.5, 0.5] along the three axes of the 3D
coordinates system, thereby obtaining a set of new point clouds {x0 = Ttranslation(x) = x+�x}.

Scale sensitivity: The metric of scale robustness quantifies the vulnerability of the inference caused
by the scale of 3D point clouds. Given an input point cloud x, we enumerate all scales ↵ from the
range of [0.5, 2], thereby obtaining a set of new point clouds {x0 = Tscale(x) = ↵x}.

Then, we focus on other three sensitivity metrics for three types of local 3D structures, i.e. sensitiv-
ity to linearity (edge-like structures), sensitivity to planarity (surface-like structures), and sen-
sitivity to scattering (mass-like structures). According to Guinard and Landrieu [2017], Demantké
et al. [2011], the significance of a point cloud to be edge-like structures/surface-like structures/mass-
like structures is defined as follows.
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where �1 � �2 � �3 denote three eigenvalues of the covariance matrix of a region’s points.

Without loss of generality, we take the linearity for example to introduce the way to enumerate a
region’s all values of linearity. Given a region, we use the gradient ascent/descent method to modify
the 3D coordinates p 2 R3 of each point in this region, so as to increase/decrease the linearity, i.e.
pnew = p + ⌘ @linearity

@p . As Fig. 2 (a) shows, we enumerate all regions’ linearity at the same time.
The enumeration is implemented under the following two constraints. (1) Each value of �1 needs
to be within the range of �1 ± �, so as the �2 and �3. (2) kpfinal � porik  d, where k·k denotes
the L2-norm. In this way, we obtain a set of point clouds with different degrees of local edge-like
structures. In real implementation, we set ⌘ = 0.001, � = 0.003, and d = 0.03.

3.2 Quantifying the spatial smoothness of knowledge representations

Besides the analysis of representation sensitivity, we also evaluate the spatial smoothness of feature
representations encoded by a DNN. Because most benchmark 3D datasets Wu et al. [2015], Yi et al.
[2016] only contain objects with simple 3D structures (see Fig. 1 (c)), except for special regions (e.g.
edges), most adjacent regions of such simple objects usually have similar local 3D structures (e.g.
surfaces). Therefore, most adjacent regions are supposed to have similar regional attributions, i.e.
high smoothness. In this way, high spatial smoothness indicates reliable feature representations. We
quantify the smoothness of the regional attribution between neighboring regions, as follows.
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where N (i) denotes a set of nearest point cloud regions (which are determined by the ball-query
search Qi et al. [2017b]) of region i; Zsmooth = ET [|vx0(N) � vx0(;)|x0=T (x)] is computed for
normalization; vx0(N) denotes the network output given the entire point cloud x0, and vx0(;) denotes
the network output when we mask all regions in x0 by setting all points to the center coordinates of
the point cloud.

3.3 Quantifying the interaction complexity of a DNN

In addition, we also quantify the representation complexity of a DNN, i.e. the complexity of 3D
structures encoded by a DNN. To this end, the 3D structures encoded by a DNN is represented using
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all translations �x = [�x1,�x2,�x3]> from the range of [�0.5, 0.5] along the three axes of the 3D
coordinates system, thereby obtaining a set of new point clouds {x0 = Ttranslation(x) = x+�x}.

Scale sensitivity: The metric of scale robustness quantifies the vulnerability of the inference caused
by the scale of 3D point clouds. Given an input point cloud x, we enumerate all scales ↵ from the
range of [0.5, 2], thereby obtaining a set of new point clouds {x0 = Tscale(x) = ↵x}.

Then, we focus on other three sensitivity metrics for three types of local 3D structures, i.e. sensitiv-
ity to linearity (edge-like structures), sensitivity to planarity (surface-like structures), and sen-
sitivity to scattering (mass-like structures). According to Guinard and Landrieu [2017], Demantké
et al. [2011], the significance of a point cloud to be edge-like structures/surface-like structures/mass-
like structures is defined as follows.

linearity =
�1 � �2

�1
; planarity =

�2 � �3

�1
; scattering =

�3

�1
; (4)

where �1 � �2 � �3 denote three eigenvalues of the covariance matrix of a region’s points.

Without loss of generality, we take the linearity for example to introduce the way to enumerate a
region’s all values of linearity. Given a region, we use the gradient ascent/descent method to modify
the 3D coordinates p 2 R3 of each point in this region, so as to increase/decrease the linearity, i.e.
pnew = p + ⌘ @linearity

@p . As Fig. 2 (a) shows, we enumerate all regions’ linearity at the same time.
The enumeration is implemented under the following two constraints. (1) Each value of �1 needs
to be within the range of �1 ± �, so as the �2 and �3. (2) kpfinal � porik  d, where k·k denotes
the L2-norm. In this way, we obtain a set of point clouds with different degrees of local edge-like
structures. In real implementation, we set ⌘ = 0.001, � = 0.003, and d = 0.03.

3.2 Quantifying the spatial smoothness of knowledge representations

Besides the analysis of representation sensitivity, we also evaluate the spatial smoothness of feature
representations encoded by a DNN. Because most benchmark 3D datasets Wu et al. [2015], Yi et al.
[2016] only contain objects with simple 3D structures (see Fig. 1 (c)), except for special regions (e.g.
edges), most adjacent regions of such simple objects usually have similar local 3D structures (e.g.
surfaces). Therefore, most adjacent regions are supposed to have similar regional attributions, i.e.
high smoothness. In this way, high spatial smoothness indicates reliable feature representations. We
quantify the smoothness of the regional attribution between neighboring regions, as follows.

non-smoothness = Ex2XETEiEj2N (i)

h |�x0(i)� �x0(j)|
Zsmooth

���
x0=T (x)

i
(5)

where N (i) denotes a set of nearest point cloud regions (which are determined by the ball-query
search Qi et al. [2017b]) of region i; Zsmooth = ET [|vx0(N) � vx0(;)|x0=T (x)] is computed for
normalization; vx0(N) denotes the network output given the entire point cloud x0, and vx0(;) denotes
the network output when we mask all regions in x0 by setting all points to the center coordinates of
the point cloud.

3.3 Quantifying the interaction complexity of a DNN

In addition, we also quantify the representation complexity of a DNN, i.e. the complexity of 3D
structures encoded by a DNN. To this end, the 3D structures encoded by a DNN is represented using

5

is computed for normalization.
[1]Wu et al. 3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015.
[2]Yi et al. A scalable active framework for region annotation in 3d shape collections. SIGGRAPH Asia, 2016.
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Input regions of a DNN do not work 
individually, but collaborate with each 
other to construct a specific 3D 
structure for inference.

𝑚-th order interaction[1] between the regions 𝑖 and 𝑗:

Average strength of the 𝑚-th order interactions:

the interaction between different 3D point cloud regions. Here, input regions of a DNN do not work
individually, but collaborate with each other to construct a specific 3D structure for inference. Ren et
al. Ren et al. [2021] defined the multi-order interactions between two input variables. Given two
input regions i and j, the interaction of the m-th order measures the additional attribution brought by
collaborations between i and j under the context of m regions.

I(m)(i, j) = ES✓N\{i,j},|S|=m

⇥
v(S [ {i, j})� v(S [ {i})� v(S [ {j}) + v(S)

⇤
, (6)

I(m)(i, j) > 0 indicates that the presence of region j increases the attribution of region i, �(i).
I(m)(i, j) < 0 indicates that the presence of region j decreases the value of �(i). I(m)(i, j) ⇡ 0
indicates that region j and region i are almost independent of each other. Please see our supple-
mental materials for details about the meaning of multi-order interaction and the linearity, nullity,
commutativity, symmetry, and efficiency axioms of the multi-order interaction.

Here, we could consider the order m as the number of contextual regions involved in the computation
of interactions between region i and region j. For example, as Fig. 2 (b) shows, regions i and j (in
red), and other m regions (in blue) work together to construct a 3D structure to classify the earphone.

High-order interactions measure the effects of global collaborations among massive regions, i.e.
representing complex and large-scale 3D structures. Low-order interactions measure the effects of
collaborations between a few regions, i.e. usually representing simple and small-scale 3D structures.
Then, we use the following metric to quantify the average strength of the m-th order interactions as
the significance of the m-order complex 3D structures.

I(m) = Ex2X

h��Ei,j [I
(m)
x (i, j)]

��
i
. (7)

If the I(m) of a low order is significantly larger than that of a high order, then the representation
complexity of the DNN is limited to representing simple and local 3D structures.

4 Comparative studies

In this section, we conducted comparative studies to analyze properties of different point cloud
regions of different DNNs. Ideally, a well-trained DNN for 3D point cloud processing was supposed
to be robust to the rotation and translation, and the DNN was supposed to mainly use the scale and
local 3D structures for inference. Besides, considering the 3D structures of objects in benchmark 3D
datasets Wu et al. [2015], Yi et al. [2016] were usually simple, most adjacent regions in an object had
continuous and similar 3D structures. Therefore, a well-trained DNN was supposed to have similar
regional attributions among these neighboring regions. We also analyzed how complex is the 3D
structure that can be encoded by a classic DNN.

We used our method to analyze five classic DNNs for 3D point cloud processing, including the
PointNet Qi et al. [2017a], the PointNet++ Qi et al. [2017b], the DGCNN Wang et al. [2019b], the
non-dynamic version of DGCNN (i.e. GCNN), and the PointConv Wu et al. [2019]. All DNNs3 were
learned based on the ModelNet10 dataset Wu et al. [2015] and the ShapeNet part4 dataset Yi et al.
[2016]. We followed Qi et al. [2017a] to only use 1024 points of each point cloud to train all DNNs.
Each point cloud was partitioned to n = 32 regions1 for the computation of all metrics.

We have conducted comparative studies to explore the effects of the size of regions, and the size
of datasets on sensitivities. We found that (1) as the size of regions increased, all sensitivities will
increased. However, the relative magnitude of sensitivities of different models did not change; (2) the
size of datasets (i.e. the number of training samples) did not significantly affect the metrics in most
cases. Please see our supplementary materials for details.

In particular, the previous study Zhao et al. [2020] has discovered that people could use rotations
to attack DNNs for 3D point cloud processing. Therefore, we used the adversarial training to learn
a GCNN w.r.t. the attacks based on rotations and translations of point clouds, so as to improve the
GCNN’s robustness to the rotation and translation. We extended the method in Kurakin et al. [2017]

3All DNNs used in our paper were well-trained. Please see our supplementary materials for details about the
training protocol and the accuracy of each DNN.

4We only used part of the ShapeNet part dataset due to the time limitation. Please see our supplemental
materials for details.
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regions of different DNNs. Ideally, a well-trained DNN for 3D point cloud processing was supposed
to be robust to the rotation and translation, and the DNN was supposed to mainly use the scale and
local 3D structures for inference. Besides, considering the 3D structures of objects in benchmark 3D
datasets Wu et al. [2015], Yi et al. [2016] were usually simple, most adjacent regions in an object had
continuous and similar 3D structures. Therefore, a well-trained DNN was supposed to have similar
regional attributions among these neighboring regions. We also analyzed how complex is the 3D
structure that can be encoded by a classic DNN.

We used our method to analyze five classic DNNs for 3D point cloud processing, including the
PointNet Qi et al. [2017a], the PointNet++ Qi et al. [2017b], the DGCNN Wang et al. [2019b], the
non-dynamic version of DGCNN (i.e. GCNN), and the PointConv Wu et al. [2019]. All DNNs3 were
learned based on the ModelNet10 dataset Wu et al. [2015] and the ShapeNet part4 dataset Yi et al.
[2016]. We followed Qi et al. [2017a] to only use 1024 points of each point cloud to train all DNNs.
Each point cloud was partitioned to n = 32 regions1 for the computation of all metrics.

We have conducted comparative studies to explore the effects of the size of regions, and the size
of datasets on sensitivities. We found that (1) as the size of regions increased, all sensitivities will
increased. However, the relative magnitude of sensitivities of different models did not change; (2) the
size of datasets (i.e. the number of training samples) did not significantly affect the metrics in most
cases. Please see our supplementary materials for details.

In particular, the previous study Zhao et al. [2020] has discovered that people could use rotations
to attack DNNs for 3D point cloud processing. Therefore, we used the adversarial training to learn
a GCNN w.r.t. the attacks based on rotations and translations of point clouds, so as to improve the
GCNN’s robustness to the rotation and translation. We extended the method in Kurakin et al. [2017]

3All DNNs used in our paper were well-trained. Please see our supplementary materials for details about the
training protocol and the accuracy of each DNN.
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Figure 2: (a) Visualization of increasing the linearity/planarity/scattering of all regions. (b) Visualiza-
tion of multi-order interactions.

all translations �x = [�x1,�x2,�x3]> from the range of [�0.5, 0.5] along the three axes of the 3D
coordinates system, thereby obtaining a set of new point clouds {x0 = Ttranslation(x) = x+�x}.

Scale sensitivity: The metric of scale robustness quantifies the vulnerability of the inference caused
by the scale of 3D point clouds. Given an input point cloud x, we enumerate all scales ↵ from the
range of [0.5, 2], thereby obtaining a set of new point clouds {x0 = Tscale(x) = ↵x}.

Then, we focus on other three sensitivity metrics for three types of local 3D structures, i.e. sensitiv-
ity to linearity (edge-like structures), sensitivity to planarity (surface-like structures), and sen-
sitivity to scattering (mass-like structures). According to Guinard and Landrieu [2017], Demantké
et al. [2011], the significance of a point cloud to be edge-like structures/surface-like structures/mass-
like structures is defined as follows.

linearity =
�1 � �2

�1
; planarity =

�2 � �3

�1
; scattering =

�3

�1
; (4)

where �1 � �2 � �3 denote three eigenvalues of the covariance matrix of a region’s points.

Without loss of generality, we take the linearity for example to introduce the way to enumerate a
region’s all values of linearity. Given a region, we use the gradient ascent/descent method to modify
the 3D coordinates p 2 R3 of each point in this region, so as to increase/decrease the linearity, i.e.
pnew = p + ⌘ @linearity

@p . As Fig. 2 (a) shows, we enumerate all regions’ linearity at the same time.
The enumeration is implemented under the following two constraints. (1) Each value of �1 needs
to be within the range of �1 ± �, so as the �2 and �3. (2) kpfinal � porik  d, where k·k denotes
the L2-norm. In this way, we obtain a set of point clouds with different degrees of local edge-like
structures. In real implementation, we set ⌘ = 0.001, � = 0.003, and d = 0.03.

3.2 Quantifying the spatial smoothness of knowledge representations

Besides the analysis of representation sensitivity, we also evaluate the spatial smoothness of feature
representations encoded by a DNN. Because most benchmark 3D datasets Wu et al. [2015], Yi et al.
[2016] only contain objects with simple 3D structures (see Fig. 1 (c)), except for special regions (e.g.
edges), most adjacent regions of such simple objects usually have similar local 3D structures (e.g.
surfaces). Therefore, most adjacent regions are supposed to have similar regional attributions, i.e.
high smoothness. In this way, high spatial smoothness indicates reliable feature representations. We
quantify the smoothness of the regional attribution between neighboring regions, as follows.

non-smoothness = Ex2XETEiEj2N (i)

h |�x0(i)� �x0(j)|
Zsmooth

���
x0=T (x)

i
(5)

where N (i) denotes a set of nearest point cloud regions (which are determined by the ball-query
search Qi et al. [2017b]) of region i; Zsmooth = ET [|vx0(N) � vx0(;)|x0=T (x)] is computed for
normalization; vx0(N) denotes the network output given the entire point cloud x0, and vx0(;) denotes
the network output when we mask all regions in x0 by setting all points to the center coordinates of
the point cloud.

3.3 Quantifying the interaction complexity of a DNN

In addition, we also quantify the representation complexity of a DNN, i.e. the complexity of 3D
structures encoded by a DNN. To this end, the 3D structures encoded by a DNN is represented using

5

[1]Zhang et al. Interpreting and boosting dropout from a game-theoretic view. In ICLR, 2020.
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Explaining the regional sensitivity of DNNs
Table 1: Average sensitivities over all regions among all samples.

Dataset Model rotation translation scale sensitivity sensitivity sensitivity
sensitivity sensitivity sensitivity to edges to surfaces to masses

ModelNet10

PointNet 0.159±0.070 0.110±0.053 0.024±0.017 0.007±0.007 0.010±0.009 0.009±0.009
PointNet++ 0.171±0.064 0.004±0.004 0.054±0.027 0.018±0.011 0.026±0.016 0.029±0.019
PointConv 0.145±0.060 2.3e-4±1.9e-4 0.027±0.019 0.010±0.007 0.015±0.011 0.017±0.013
DGCNN 0.174±0.075 0.048±0.024 0.020±0.014 0.016±0.009 0.022±0.014 0.023±0.015
GCNN 0.174±0.067 0.050±0.026 0.020±0.014 0.017±0.010 0.022±0.014 0.023±0.015
adv-GCNN1 0.034±0.012 0.007±0.004 0.020±0.014 0.022±0.014 0.027±0.014 0.029±0.018

ShapeNet part

PointNet 0.107±0.065 0.071±0.032 0.023±0.020 0.005±0.005 0.004±0.004 0.005±0.005
PointNet++ 0.142±0.057 0.001±0.000 0.044±0.025 0.014±0.009 0.014±0.009 0.016±0.011
PointConv 0.168±0.073 1.4e-5±2.5e-5 0.053±0.042 0.017±0.013 0.016±0.011 0.019±0.015
DGCNN 0.141±0.069 0.067±0.033 0.020±0.015 0.014±0.011 0.013±0.011 0.016±0.013
GCNN 0.141±0.065 0.072±0.038 0.021±0.015 0.014±0.011 0.013±0.010 0.016±0.015
adv-GCNN1 0.028±0.012 0.009±0.008 0.025±0.020 0.028±0.022 0.024±0.015 0.028±0.019

1 adv-GCNN denoted the adversarially trained GCNN, which was supposed to be robust to rotation and translation.

(b) Visuali]ation of  regional attributions.
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(a) Visuali]ation of six types of regional sensitivities.
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Figure 3: Visualization of regional sensitivities and regional attributions. (a) Visualization of regional
sensitivities. The regional sensitivities of all point clouds are normalized to the same colorbar, which
is shown in a log-scale. (b) Visualization of regional attributions. For each point cloud, we selected
the most rotation-sensitive region i⇤ (shown as black boxes) and visualized the pair of point clouds
with specific orientations corresponding to the maximum and the minimum regional attributions of
the region i⇤. More visualization results are shown in our supplemental materials.

In terms of translation sensitivity, PointNet was relatively sensitive to the translation, because PointNet
extracted features from global coordinates of points, thereby being sensitive to the translation. In
contrast, PointNet++ and PointConv were robust to translation, because these two DNNs encoded
relative coordinates. Particularly, PointConv did not use global coordinates during the inference
process, thereby yielding the lowest translation sensitivity (see the point cloud with the darkest blue
in the second row of Fig. 3 (a)). In terms of scale sensitivity, PointNet++ was relatively sensitive
to the scale, because PointNet++ encoded features of neighborhood with fixed scales. Besides,
because adversarial training forced the GCNN to remove attention from rotation-sensitive features
and translation-sensitive features, the adversarially trained GCNN paid more attention to structural
information. Therefore, compared with the original GCNN, the adversarially trained GCNN had
higher sensitivity to local 3D structures. Furthermore, we also obtained the following conclusions.

7
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Rotation robustness was the Achilles’ heel 
of classic DNNs for 3D point cloud 
processing. 

All DNNs were sensitive to rotations except 
for the adversarially trained GCNN.
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Explaining the regional sensitivity of DNNs

Table 1: Average sensitivities over all regions among all samples.

Dataset Model rotation translation scale sensitivity sensitivity sensitivity
sensitivity sensitivity sensitivity to edges to surfaces to masses

ModelNet10

PointNet 0.159±0.070 0.110±0.053 0.024±0.017 0.007±0.007 0.010±0.009 0.009±0.009
PointNet++ 0.171±0.064 0.004±0.004 0.054±0.027 0.018±0.011 0.026±0.016 0.029±0.019
PointConv 0.145±0.060 2.3e-4±1.9e-4 0.027±0.019 0.010±0.007 0.015±0.011 0.017±0.013
DGCNN 0.174±0.075 0.048±0.024 0.020±0.014 0.016±0.009 0.022±0.014 0.023±0.015
GCNN 0.174±0.067 0.050±0.026 0.020±0.014 0.017±0.010 0.022±0.014 0.023±0.015
adv-GCNN1 0.034±0.012 0.007±0.004 0.020±0.014 0.022±0.014 0.027±0.014 0.029±0.018

ShapeNet part

PointNet 0.107±0.065 0.071±0.032 0.023±0.020 0.005±0.005 0.004±0.004 0.005±0.005
PointNet++ 0.142±0.057 0.001±0.000 0.044±0.025 0.014±0.009 0.014±0.009 0.016±0.011
PointConv 0.168±0.073 1.4e-5±2.5e-5 0.053±0.042 0.017±0.013 0.016±0.011 0.019±0.015
DGCNN 0.141±0.069 0.067±0.033 0.020±0.015 0.014±0.011 0.013±0.011 0.016±0.013
GCNN 0.141±0.065 0.072±0.038 0.021±0.015 0.014±0.011 0.013±0.010 0.016±0.015
adv-GCNN1 0.028±0.012 0.009±0.008 0.025±0.020 0.028±0.022 0.024±0.015 0.028±0.019

1 adv-GCNN denoted the adversarially trained GCNN, which was supposed to be robust to rotation and translation.

(b) Visuali]ation of  regional attributions.
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Figure 3: Visualization of regional sensitivities and regional attributions. (a) Visualization of regional
sensitivities. The regional sensitivities of all point clouds are normalized to the same colorbar, which
is shown in a log-scale. (b) Visualization of regional attributions. For each point cloud, we selected
the most rotation-sensitive region i⇤ (shown as black boxes) and visualized the pair of point clouds
with specific orientations corresponding to the maximum and the minimum regional attributions of
the region i⇤. More visualization results are shown in our supplemental materials.

In terms of translation sensitivity, PointNet was relatively sensitive to the translation, because PointNet
extracted features from global coordinates of points, thereby being sensitive to the translation. In
contrast, PointNet++ and PointConv were robust to translation, because these two DNNs encoded
relative coordinates. Particularly, PointConv did not use global coordinates during the inference
process, thereby yielding the lowest translation sensitivity (see the point cloud with the darkest blue
in the second row of Fig. 3 (a)). In terms of scale sensitivity, PointNet++ was relatively sensitive
to the scale, because PointNet++ encoded features of neighborhood with fixed scales. Besides,
because adversarial training forced the GCNN to remove attention from rotation-sensitive features
and translation-sensitive features, the adversarially trained GCNN paid more attention to structural
information. Therefore, compared with the original GCNN, the adversarially trained GCNN had
higher sensitivity to local 3D structures. Furthermore, we also obtained the following conclusions.
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Table 1: Average sensitivities over all regions among all samples.

Dataset Model rotation translation scale sensitivity sensitivity sensitivity
sensitivity sensitivity sensitivity to edges to surfaces to masses

ModelNet10

PointNet 0.159±0.070 0.110±0.053 0.024±0.017 0.007±0.007 0.010±0.009 0.009±0.009
PointNet++ 0.171±0.064 0.004±0.004 0.054±0.027 0.018±0.011 0.026±0.016 0.029±0.019
PointConv 0.145±0.060 2.3e-4±1.9e-4 0.027±0.019 0.010±0.007 0.015±0.011 0.017±0.013
DGCNN 0.174±0.075 0.048±0.024 0.020±0.014 0.016±0.009 0.022±0.014 0.023±0.015
GCNN 0.174±0.067 0.050±0.026 0.020±0.014 0.017±0.010 0.022±0.014 0.023±0.015
adv-GCNN1 0.034±0.012 0.007±0.004 0.020±0.014 0.022±0.014 0.027±0.014 0.029±0.018

ShapeNet part

PointNet 0.107±0.065 0.071±0.032 0.023±0.020 0.005±0.005 0.004±0.004 0.005±0.005
PointNet++ 0.142±0.057 0.001±0.000 0.044±0.025 0.014±0.009 0.014±0.009 0.016±0.011
PointConv 0.168±0.073 1.4e-5±2.5e-5 0.053±0.042 0.017±0.013 0.016±0.011 0.019±0.015
DGCNN 0.141±0.069 0.067±0.033 0.020±0.015 0.014±0.011 0.013±0.011 0.016±0.013
GCNN 0.141±0.065 0.072±0.038 0.021±0.015 0.014±0.011 0.013±0.010 0.016±0.015
adv-GCNN1 0.028±0.012 0.009±0.008 0.025±0.020 0.028±0.022 0.024±0.015 0.028±0.019

1 adv-GCNN denoted the adversarially trained GCNN, which was supposed to be robust to rotation and translation.

(b) Visuali]ation of  regional attributions.
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(a) Visuali]ation of six types of regional sensitivities.
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Figure 3: Visualization of regional sensitivities and regional attributions. (a) Visualization of regional
sensitivities. The regional sensitivities of all point clouds are normalized to the same colorbar, which
is shown in a log-scale. (b) Visualization of regional attributions. For each point cloud, we selected
the most rotation-sensitive region i⇤ (shown as black boxes) and visualized the pair of point clouds
with specific orientations corresponding to the maximum and the minimum regional attributions of
the region i⇤. More visualization results are shown in our supplemental materials.

In terms of translation sensitivity, PointNet was relatively sensitive to the translation, because PointNet
extracted features from global coordinates of points, thereby being sensitive to the translation. In
contrast, PointNet++ and PointConv were robust to translation, because these two DNNs encoded
relative coordinates. Particularly, PointConv did not use global coordinates during the inference
process, thereby yielding the lowest translation sensitivity (see the point cloud with the darkest blue
in the second row of Fig. 3 (a)). In terms of scale sensitivity, PointNet++ was relatively sensitive
to the scale, because PointNet++ encoded features of neighborhood with fixed scales. Besides,
because adversarial training forced the GCNN to remove attention from rotation-sensitive features
and translation-sensitive features, the adversarially trained GCNN paid more attention to structural
information. Therefore, compared with the original GCNN, the adversarially trained GCNN had
higher sensitivity to local 3D structures. Furthermore, we also obtained the following conclusions.
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Figure 3: Visualization of regional sensitivities and regional attributions. (a) Visualization of regional
sensitivities. The regional sensitivities of all point clouds are normalized to the same colorbar, which
is shown in a log-scale. (b) Visualization of regional attributions. For each point cloud, we selected
the most rotation-sensitive region i⇤ (shown as black boxes) and visualized the pair of point clouds
with specific orientations corresponding to the maximum and the minimum regional attributions of
the region i⇤. More visualization results are shown in our supplemental materials.

In terms of translation sensitivity, PointNet was relatively sensitive to the translation, because PointNet
extracted features from global coordinates of points, thereby being sensitive to the translation. In
contrast, PointNet++ and PointConv were robust to translation, because these two DNNs encoded
relative coordinates. Particularly, PointConv did not use global coordinates during the inference
process, thereby yielding the lowest translation sensitivity (see the point cloud with the darkest blue
in the second row of Fig. 3 (a)). In terms of scale sensitivity, PointNet++ was relatively sensitive
to the scale, because PointNet++ encoded features of neighborhood with fixed scales. Besides,
because adversarial training forced the GCNN to remove attention from rotation-sensitive features
and translation-sensitive features, the adversarially trained GCNN paid more attention to structural
information. Therefore, compared with the original GCNN, the adversarially trained GCNN had
higher sensitivity to local 3D structures. Furthermore, we also obtained the following conclusions.
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PointNet failed to encode local 
3D structures.

PointNet did not encode the 
information of neighboring 
points/regions.

Explaining the regional sensitivity of DNNs
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Explaining the regional attributions

Most DNNs usually failed to extract rotation-robust features from 3D points at edges/corners.
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Pearson correlation coefficients between regional attributions and sensitivities.

• Most DNNs usually could not ignore features of rotation-sensitive points at edges and corners
• Adversarial training reduced the correlation between the regional sensitivity and the regional 

attribution

Table 2: Pearson correlation coefficients between regional attributions and sensitivities.

Models ModelNet10 dataset ShapeNet part dataset
rotation translation scale rotation translation scale

sensitivity sensitivity sensitivity sensitivity sensitivity sensitivity

PointNet 0.648±0.266 0.637±0.165 0.473±0.194 0.528±0.278 0.549±0.204 0.538±0.275
PointNet++ 0.811±0.123 0.415±0.189 0.592±0.142 0.629±0.154 0.266±0.269 0.543±0.171
PointConv 0.601±0.234 0.009±0.179 0.473±0.174 0.739±0.166 -0.006±0.170 0.617±0.168
DGCNN 0.788±0.111 0.622±0.164 0.494±0.224 0.725±0.176 0.649±0.174 0.458±0.201
GCNN 0.832±0.082 0.610±0.131 0.464±0.231 0.696±0.158 0.682±0.198 0.431±0.199
adv-GCNN1 0.488±0.167 0.298±0.234 0.414±0.256 0.343±0.234 0.255±0.223 0.476±0.304
1 adv-GCNN denoted the adversarially trained GCNN.
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Figure 4: (a) Positive correlation between the regional rotation sensitivity and the regional attribution
of the PointNet. (b) Visualization of spatial smoothness of regional attributions. Experimental results
show that the adversarial training increased the smoothness of neighboring regions’ attributions.

• Rotation robustness was the Achilles’ heel of classic DNNs for 3D point cloud processing. As
Table 1 and Fig. 3 (a) show, all DNNs were sensitive to rotations except for the adversarially trained
GCNN.

• PointNet failed to encode local 3D structures. In terms of sensitivity to local 3D structures, PointNet
was the least sensitive DNN (see Table 1). It was because convolution operations of the PointNet
encoded the information of each point independently, i.e. the PointNet did not encode the information
of neighboring points/regions. This conclusion is also verified by the phenomenon that PointNet had
darker blue point clouds than other DNNs (see the last three rows of Fig. 3 (a)).

• Most DNNs usually failed to extract rotation-robust features from 3D points at edges and corners.
Given a point cloud x, we selected the most rotation-sensitive region i⇤ (shown as black boxes in
Fig. 3 (b)). We rotated the point cloud x to the orientations that maximized and minimized the
attribution of region i⇤, i.e. ✓1 = argmax✓ �x0(i⇤) and ✓2 = argmin✓ �x0(i⇤). Fig. 3 (b) visualizes
regional attributions of point clouds rotated by ✓1 and ✓2. We found that rotation-sensitive regions
were usually distributed on the edges and corners, which verified our conclusion.

• Most DNNs usually could not ignore features of rotation-sensitive points at edges and corners.
Table 2 shows that the Pearson correlation coefficient [28] between each region’s average strength
of attribution over different rotations (i.e. E✓[|�x0(i)|], s.t. x0 = Trotation(x|✓)) and this region’s
rotation sensitivity ai(x) is much larger than Pearson correlation coefficients between the attribution
and other sensitivities. This means that rotation-sensitive regions (which were usually distributed
on the edges and corners) usually had large regional attributions, which verified our conclusion.
Besides, Table 2 also shows that the adversarial training reduced the correlation between the regional
sensitivity and the regional attribution. Fig. 4 (a) visualizes the positive correlation between the
regional rotation sensitivity and the regional attribution of the PointNet.

Comparative study 2, explaining the spatial smoothness of knowledge representations. Table 3
shows the non-smoothness of knowledge representations encoded by different DNNs. Note that
the adversarially trained GCNN was significantly biased to the knife category. In other words, the
adversarially trained GCNN classified the empty input as the knife category with a high confidence
(please see our supplementary materials for details). Therefore, to enable fair comparisons, we also
reported the spatial non-smoothness of the adversarially trained GCNN on all other categories except
the knife (see the last two columns in Table 3). We discovered that without considering the biased
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Figure 4: (a) Positive correlation between the regional rotation sensitivity and the regional attribution
of the PointNet. (b) Visualization of spatial smoothness of regional attributions. Experimental results
show that the adversarial training increased the smoothness of neighboring regions’ attributions.

• Rotation robustness was the Achilles’ heel of classic DNNs for 3D point cloud processing. As
Table 1 and Fig. 3 (a) show, all DNNs were sensitive to rotations except for the adversarially trained
GCNN.

• PointNet failed to encode local 3D structures. In terms of sensitivity to local 3D structures, PointNet
was the least sensitive DNN (see Table 1). It was because convolution operations of the PointNet
encoded the information of each point independently, i.e. the PointNet did not encode the information
of neighboring points/regions. This conclusion is also verified by the phenomenon that PointNet had
darker blue point clouds than other DNNs (see the last three rows of Fig. 3 (a)).

• Most DNNs usually failed to extract rotation-robust features from 3D points at edges and corners.
Given a point cloud x, we selected the most rotation-sensitive region i⇤ (shown as black boxes in
Fig. 3 (b)). We rotated the point cloud x to the orientations that maximized and minimized the
attribution of region i⇤, i.e. ✓1 = argmax✓ �x0(i⇤) and ✓2 = argmin✓ �x0(i⇤). Fig. 3 (b) visualizes
regional attributions of point clouds rotated by ✓1 and ✓2. We found that rotation-sensitive regions
were usually distributed on the edges and corners, which verified our conclusion.

• Most DNNs usually could not ignore features of rotation-sensitive points at edges and corners.
Table 2 shows that the Pearson correlation coefficient [28] between each region’s average strength
of attribution over different rotations (i.e. E✓[|�x0(i)|], s.t. x0 = Trotation(x|✓)) and this region’s
rotation sensitivity ai(x) is much larger than Pearson correlation coefficients between the attribution
and other sensitivities. This means that rotation-sensitive regions (which were usually distributed
on the edges and corners) usually had large regional attributions, which verified our conclusion.
Besides, Table 2 also shows that the adversarial training reduced the correlation between the regional
sensitivity and the regional attribution. Fig. 4 (a) visualizes the positive correlation between the
regional rotation sensitivity and the regional attribution of the PointNet.

Comparative study 2, explaining the spatial smoothness of knowledge representations. Table 3
shows the non-smoothness of knowledge representations encoded by different DNNs. Note that
the adversarially trained GCNN was significantly biased to the knife category. In other words, the
adversarially trained GCNN classified the empty input as the knife category with a high confidence
(please see our supplementary materials for details). Therefore, to enable fair comparisons, we also
reported the spatial non-smoothness of the adversarially trained GCNN on all other categories except
the knife (see the last two columns in Table 3). We discovered that without considering the biased
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Explaining the spatial smoothness of DNNs

Adversarial training increased the spatial smoothness of knowledge representations.

Table 3: The non-smoothness of attributions between adjacent regions.

Models
ModelNet10 dataset ShapeNet part dataset ShapeNet part dataset

(removing the biased category)
rotation translation rotation translation rotation translation

PointNet 0.071±0.039 0.029±0.017 0.025±0.009 0.016±0.005 0.025±0.010 0.015±0.003
PointNet++ 0.091±0.041 0.041±0.022 0.036±0.011 0.022±0.016 0.034±0.010 0.017±0.003
PointConv 0.047±0.014 0.056±0.108 0.080±0.019 0.040±0.017 0.081±0.020 0.039±0.018
DGCNN 0.071±0.024 0.031±0.010 0.047±0.019 0.026±0.017 0.044±0.017 0.021±0.005
GCNN 0.083±0.026 0.034±0.012 0.050±0.019 0.027±0.010 0.049±0.020 0.025±0.008
adv-GCNN1 0.029±0.012 0.030±0.013 0.054±0.110 0.056±0.114 0.022±0.008 0.023±0.008
1 adv-GCNN denoted the adversarially trained GCNN.

knife category, adversarial training increased the spatial smoothness of knowledge representations.
Fig 4 (b) also verified this conclusion.

Comparative study 3, explaining the interaction complexity of DNNs. Fig. 5 shows multi-order
interactions of different DNNs. From this figure, we discovered the following new insights.

• Most DNNs failed to encode high-order interactions (i.e. global and large-scale 3D structures). As
Fig. 5 (a) shows, no matter given normal samples or adversarial samples5, classic DNNs encoded
extremely low-order interactions. This indicated that most DNNs did not extract complex and
large-scale 3D structures from normal samples.

• The adversarial training (using rotations and translations for attack, instead of using perturbations)
increased the effects of extremely high-order interactions. As Fig. 5 (a) shows, the adversarially
trained GCNN encoded extremely low-order interactions and extremely high-order interactions
(i.e. the global structures of objects) from normal samples. Because the GCNN was forced to
sophisticatedly select relatively complex rotation-robust features among all potential features.

• Regions with out-of-distribution high-order interactions (i.e. abnormal complex and large-scale 3D
structures) were more sensitive to the rotation than normal regions. In fact, there are two types of
high-order interactions. Unlike the above two insights describing whether or not a DNN encoded high-
order interactions on normal samples, this insight mainly focused on abnormal out-of-distribution
high-order interactions in a DNN. When a point cloud was attacked by adversarial rotations3,
the adversarial rotation3 would generate out-of-distribution high-order interactions (i.e. abnormal
complex and large-scale 3D structures) to attack the DNN. We measured interactions between the
most rotation-sensitive region i⇤ and its neighbors j 2 N (i⇤) among all input point clouds, i.e.
Ex2X

⇥
|Ej2N (i⇤)[I

(m)
x (i⇤, j)]|

⇤
. As Fig. 5 (b) shows, rotation-sensitive regions usually had more

high-order interactions than most regions. This indicates that compared to most regions, rotation-
sensitive regions paid more attention to high-order interactions, although low-order interactions of
rotation-sensitive regions increased too.

Broad applicability of the proposed metrics. We also conducted experiments on an AutoEncoder
for the reconstruction task and rotation-invariant DNNs [36] to further demonstrate the broad appli-
cability of the proposed metrics. For the AutoEncoder for the reconstruction task, we found that
(1) the AutoEncoder for reconstruction was also sensitive to rotation; (2) the AutoEncoder was
more sensitive to translation than DNNs for classification; (3) the AutoEncoder was sensitive to the
scale change. For rotation-invariant DNNs, we found that rotation-invariant DNNs were much more
robust to the rotation than traditional DNNs (even the adversarially-trained DNN). Please see our
supplementary materials for details about experimental settings and results.

Effects of data augmentation on sensitivities. We conducted comparative studies to explore the
effects of data augmentation on sensitivities. We found that (1) rotation/translation/scale data
augmentation decreased the rotation/translation/scale sensitivity of a DNN; (2) compared with
the rotation data augmentation, the adversarial training based on rotations of point clouds had a
greater impact on the rotation sensitivity. Please see our supplementary materials for details about
experimental settings and results.

5Here, we used rotations for attack, instead of using perturbations.
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Explaining the spatial smoothness of DNNs

Adversarial training increased the spatial smoothness of knowledge representations.

Table 2: Pearson correlation coefficients between regional attributions and sensitivities.

Models ModelNet10 dataset ShapeNet part dataset
rotation translation scale rotation translation scale

sensitivity sensitivity sensitivity sensitivity sensitivity sensitivity

PointNet 0.648±0.266 0.637±0.165 0.473±0.194 0.528±0.278 0.549±0.204 0.538±0.275
PointNet++ 0.811±0.123 0.415±0.189 0.592±0.142 0.629±0.154 0.266±0.269 0.543±0.171
PointConv 0.601±0.234 0.009±0.179 0.473±0.174 0.739±0.166 -0.006±0.170 0.617±0.168
DGCNN 0.788±0.111 0.622±0.164 0.494±0.224 0.725±0.176 0.649±0.174 0.458±0.201
GCNN 0.832±0.082 0.610±0.131 0.464±0.231 0.696±0.158 0.682±0.198 0.431±0.199
adv-GCNN1 0.488±0.167 0.298±0.234 0.414±0.256 0.343±0.234 0.255±0.223 0.476±0.304
1 adv-GCNN denoted the adversarially trained GCNN.

sample 2 sample 3 sample 4 sample 5
G

C
N

N
ad

Ye
rs

ar
ia

ll\
 

tra
in

ed
 G

C
N

N

(a) PositiYe correlation betZeen the regional attribution
and the regional rotation sensitiYit\. (b) Visuali]ation of spatial smoothness of regional attributions.

sample 1 high
attribution

loZ
attribution

Figure 4: (a) Positive correlation between the regional rotation sensitivity and the regional attribution
of the PointNet. (b) Visualization of spatial smoothness of regional attributions. Experimental results
show that the adversarial training increased the smoothness of neighboring regions’ attributions.

• Rotation robustness was the Achilles’ heel of classic DNNs for 3D point cloud processing. As
Table 1 and Fig. 3 (a) show, all DNNs were sensitive to rotations except for the adversarially trained
GCNN.

• PointNet failed to encode local 3D structures. In terms of sensitivity to local 3D structures, PointNet
was the least sensitive DNN (see Table 1). It was because convolution operations of the PointNet
encoded the information of each point independently, i.e. the PointNet did not encode the information
of neighboring points/regions. This conclusion is also verified by the phenomenon that PointNet had
darker blue point clouds than other DNNs (see the last three rows of Fig. 3 (a)).

• Most DNNs usually failed to extract rotation-robust features from 3D points at edges and corners.
Given a point cloud x, we selected the most rotation-sensitive region i⇤ (shown as black boxes in
Fig. 3 (b)). We rotated the point cloud x to the orientations that maximized and minimized the
attribution of region i⇤, i.e. ✓1 = argmax✓ �x0(i⇤) and ✓2 = argmin✓ �x0(i⇤). Fig. 3 (b) visualizes
regional attributions of point clouds rotated by ✓1 and ✓2. We found that rotation-sensitive regions
were usually distributed on the edges and corners, which verified our conclusion.

• Most DNNs usually could not ignore features of rotation-sensitive points at edges and corners.
Table 2 shows that the Pearson correlation coefficient [28] between each region’s average strength
of attribution over different rotations (i.e. E✓[|�x0(i)|], s.t. x0 = Trotation(x|✓)) and this region’s
rotation sensitivity ai(x) is much larger than Pearson correlation coefficients between the attribution
and other sensitivities. This means that rotation-sensitive regions (which were usually distributed
on the edges and corners) usually had large regional attributions, which verified our conclusion.
Besides, Table 2 also shows that the adversarial training reduced the correlation between the regional
sensitivity and the regional attribution. Fig. 4 (a) visualizes the positive correlation between the
regional rotation sensitivity and the regional attribution of the PointNet.

Comparative study 2, explaining the spatial smoothness of knowledge representations. Table 3
shows the non-smoothness of knowledge representations encoded by different DNNs. Note that
the adversarially trained GCNN was significantly biased to the knife category. In other words, the
adversarially trained GCNN classified the empty input as the knife category with a high confidence
(please see our supplementary materials for details). Therefore, to enable fair comparisons, we also
reported the spatial non-smoothness of the adversarially trained GCNN on all other categories except
the knife (see the last two columns in Table 3). We discovered that without considering the biased
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Explaining the representation complexity of DNNs

• Most DNNs failed to encode high-

order interactions

• Adversarial training increased the 

effects of extremely high-order 

interactions
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• Regions with out-of-distribution 

high-order interactions (i.e.

abnormal complex and large-scale 

3D structures) were more sensitive 

to the rotation than normal regions

Explaining the representation complexity of DNNs
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THANK YOU !


