

Faster Neural Network Training with Approximate Tensor Operations

Menachem Adelman

Intel & Technion adelman.menachem@gmail.com

Ido Hakimi

Technion idohakimi@gmail.com

Kfir Y. Levy

Technion kfirylevy@technion.ac.il

Mark Silberstein

Technion mark@ee.technion.ac.il

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

DNN Acceleration Approaches

Quantization and low precision

(Hubara et al., 2016; Micikevicius et al., 2017; Seide et al., 2014; Wen et al., 2017)

Channel gating/pruning

(Hua et al., 2019; Gao et al., 2018)

Model compression

(Denton et al., 2014; Jaderberg et al., 2014; Lebedev et al., 2014; Osawa et al., 2017; Gong et al., 2014; Han et al., 2015)

Enforcing low-rank structures

(Mamalet & Garcia, 2012; Kuchaiev & Ginsburg, 2017)

Asynchronous gradient updates

(Recht et al., 2011; Strom, 2015)

Partial gradient updates

(Sun et al., 2017a)

Weight extrapolations

(Kamarthi & Pittner, 1999)

Selective sparsification and locality-sensitive hashing

(Kitaev et al., 2020)

Low-rank approximation

(Choromanski et al., 2020; Wang et al., 2020)

- All these approaches can be interpreted as approximations
- Can we extend approximations to the matrix/tensor operation level?

Approximate Matrix Multiplication

- There is a rich literature on approximate matrix multiplication
- In this work, we focus on column-row sampling (CRS) (Drineas & Kannan, 2001; Drineas et al., 2006)
 - Computationally light-weight
 - Sampled matrices can be multiplied using dense HW and libraries

Can we train neural networks with approximate matrix multiplication? What are the relations between exact and approximate training?

Approximate Linear Regression

- Plugging-in CRS in linear regression SGD training leads to biased gradient estimates
- We develop Bernoulli-CRS sampling algorithm which samples column/row pairs independently
- Applied to linear regression, training with Bernoulli-CRS is equivalent to minimizing the original loss with dynamically-scaled L_2 weight regularization:

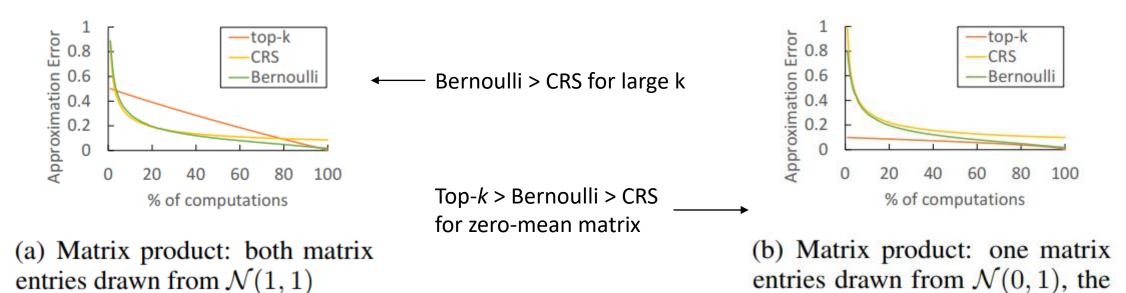
$$\mathcal{R}(w) = \mathbf{E} \left[\sum_{j=1}^{n} \frac{1 - p_j}{p_j} x_j^2 w_j^2 \right]$$

Non-linear Deep Networks

- Hard to provide general guarantees for approximate training due to non-linear activations
- However, if approximations are limited to the backward pass then under certain conditions the approximated gradients are unbiased with bounded second moments
- This implies the same SGD convergence properties of the original problem! (See e.g Ge et al., 2015)

Top-k - Selection Without Scaling

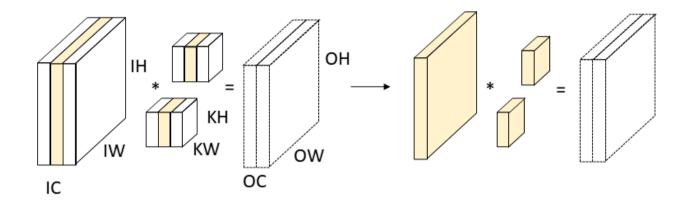
- Both CRS and Bernoulli-CRS required scaling factors to be unbiased
- Under certain conditions, selecting the column-row pairs with the highest sampling probabilities and without scaling provide the MMSE estimator minimizing the approximation error



other from $\mathcal{N}(1,1)$

Approximating Convolutions for CNNs

Extending CRS to convolution by sampling across the input channels:



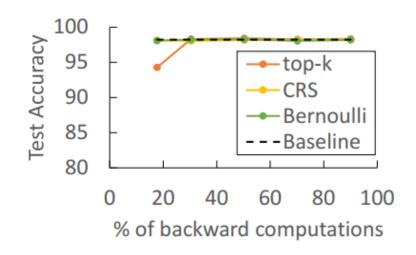
- We prove the approximation is unbiased and derive optimal sampling probabilities
- Bernoulli and Top-k can be derived for convolutions as well

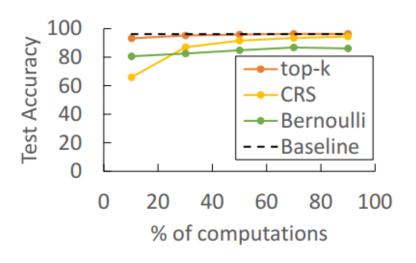
Experimental Results

- We implement CRS, Bernoulli sampling and Top-k in PyTorch
- No change in hyper-parameters
- Evaluating on MLP and CNN for MNIST, Wide Resnet-28-10 for CIFAR-10 and ResNet-50 and ResNet-152 for ImageNet
- Training on Nvidia V100

Forward vs Backward Sampling

- Backward-only sampling worked well on MNIST but provided worse results on CIFAR-10
- In CIFAR-10 with forward sampling, Top-k performed the best





3-layer MLP on MNIST (exact forward, approximate backward)

WRN-28-10 on CIFAR-10 (approximate forward and backward)

Learning Curves

Learning curves of approximate training follow the accurate baseline

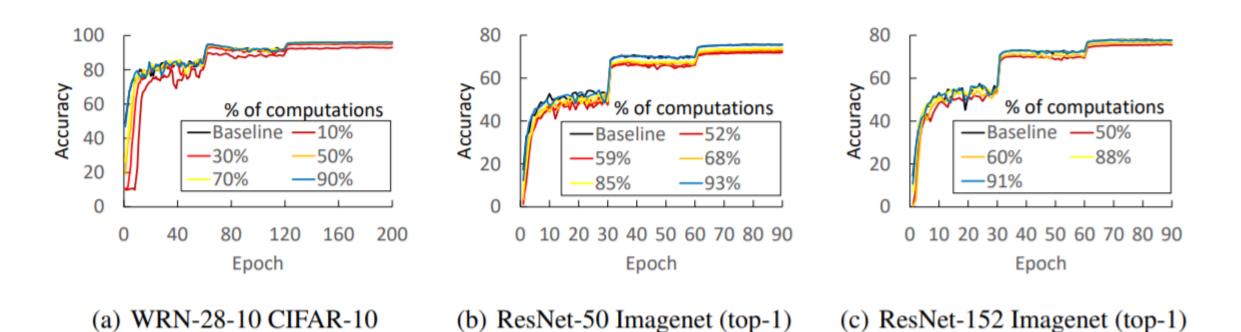


Figure 6: Learning curves for validation accuracy under different top-k sampling ratios

Experimental Results – Top-k

• Results for Top-*k* forward sampling:

NETWORK		COMPUTE REDUCTION	ACCURACY (BASELINE)	TRAINING SPEEDUP
MLP (MNIST)		50%	98.22% (98.22%)	-
CNN (MNIST)		66%	99.25% (99.35%)	-
WRN-28-10 (CIFAR-10)		50% 95.89% (96.17%)		1.33x
RESNET-50 (IMAGENET)		6.5%	75.63% (75.6%)	1.04x
RESNET-152 (IMAGENET)	SINGLE NODE	40%	76.44% (77.65%)	1.16x
		9%	77.66% (77.65%)	1.04x

Approximations provide up to 66% reduction in the amount of computations and 1.3x wall-time speedup

Multi-Node Training

- We develop another flavor of top-k selection according to the weight norms only
- Reduce the gradient communication in dataparallel training
- Up to 1.37x training speedup

NETWORK		COMPUTE REDUCTION	COMMUNICATION REDUCTION	ACCURACY (BASELINE)	TRAINING SPEEDUP
RESNET-152 (IMAGENET)	8 Nodes	40%	48%	76.44% (77.65%)	1.37x
		12%	23%	77.48% (77.65%)	1.13x
		9%	13%	77.8% (77.65%)	1.09x

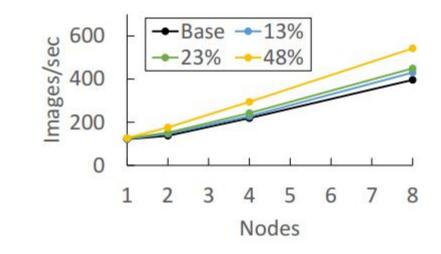


Figure 5. AllReduce with top-k-weights sampling (% fewer gradients sent).

Approximations can reduce communication on top of compute

Conclusion

- We demonstrate the utility of sample-based approximation for neural network training, both theoretically and empirically
- Research opportunities:
 - Further acceleration through dedicated GPU primitives fusing sampling and matrix multiplication/convolution
 - Varying and adaptive sampling rates for different layers and iterations
 - Studying other approximation algorithms
 - Applications in resource-constrained environments
 - Bridging the gaps between our theoretical results and what worked best in practice
- We believe that sample-based approximations and fast approximations in general are valuable additions to the toolbox of techniques for deep learning acceleration