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DNN Acceleration Approaches

Quantization and Enforcing low-rank . .
[ Weight extrapolations
P structures (Kamarthi & pitner, 1999)

(Hubara et al., 2016; Micikevicius et al., 2017; Seide et al., 2014; (Mamalet & Garcia, 2012; Kuchaiev & Ginsburg, 2017)
Wen et al., 2017)

: : Asynchronous Selective sparsification and
Channel gating/pruning : : " :
(Hua et al, 2019; Gao et a, 2018) gradient updates locality-sensitive hashing
(Recht et al., 2011; Strom, 2015 ) (Kitaev et al., 2020)

Low-rank approximation

(Choromanski et al., 2020; Wang et al., 2020)

Partial gradient updates

(Sun et al., 2017a)

* All these approaches can be interpreted as approximations
* Can we extend approximations to the matrix/tensor operation level?



Approximate Matrix Multiplication

* There is a rich literature on approximate matrix multiplication

* In this work, we focus on column-row sampling (CRS) (rineas & kannan, 2001;
Drineas et al., 2006)

- Computationally light-weight
- Sampled matrices can be multiplied using dense HW and libraries
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Can we train neural networks with approximate matrix multiplication?
What are the relations between exact and approximate training?




Approximate Linear Regression

* Plugging-in CRS in linear regression SGD training leads to biased
gradient estimates

* We develop Bernoulli-CRS sampling algorithm which samples
column/row pairs independently

* Applied to linear regression, training with Bernoulli-CRS is equivalent
to minimizing the original loss with dynamically-scaled L. weight
regularization:
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Non-linear Deep Networks

* Hard to provide general guarantees for approximate training due to
non-linear activations

* However, if approximations are limited to the backward pass then
under certain conditions the approximated gradients are
unbiased with bounded second moments

* This implies the same SGD convergence properties of the original
problem! (See e.g Ge et al., 2015)



Top-k - Selection Without Scaling

* Both CRS and Bernoulli-CRS required scaling factors to be unbiased

* Under certain conditions, selecting the column-row pairs with the
highest sampling probabilities and without scaling provide the MMSE

estimator minimizing the approximation error
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Approximating Convolutions for CNNs

* Extending CRS to convolution by sampling across the input channels:
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* We prove the approximation is unbiased and derive optimal sampling
probabilities

* Bernoulli and Top-k can be derived for convolutions as well



Experimental Results

* We implement CRS, Bernoulli sampling and Top-k in PyTorch

* No change in hyper-parameters

* Evaluating on MILP and CNN for MNIST, Wide Resnet-28-10 for CIFAR-
10 and ResNet-50 and ResNet-152 for ImageNet

* Training on Nvidia V100



Forward vs Backward Sampling

* Backward-only sampling worked well on MNIST but provided worse
results on CIFAR-10

* In CIFAR-10 with forward sampling, Top-k performed the best
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Learning Curves

* Learning curves of approximate training follow the accurate baseline
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Figure 6: Learning curves for validation accuracy under different top-k sampling ratios



Experimental Results — Top-k

* Results for Top-k forward sampling:

NETWORK COMPUTE ACCURACY TRAINING
REDUCTION (BASELINE) SPEEDUP
MLP (MNIST) 50% 98.22% (98.22%) -
CNN (MNIST) 66% 99.25% (99.35%) -
WRN-28-10 (CIFAR-10) 50% 95.89% (96.17%) 1.33X
RESNET-50 (IMAGENET) 6.5% 75.63% (75.6%) 1.04X
RESNET-152 SINGLE NODE 40% 76.44% (17.65%) 116X
(IMAGENET) 9% 77.66% (77.65%) 1.04X

Approximations provide up to 66% reduction in the amount of computations

and 1.3x wall-time speedup



Multi-Node Training

* We develop another flavor of top-k selection 6% |52 =%
according to the weight norms only 2400

* Reduce the gradient communication in data-
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Approximations can reduce communication on top of compute




Conclusion

* We demonstrate the utility of sample-based approximation for neural
network training, both theoretically and empirically

e Research opportunities:
* Further acceleration through dedicated GPU primitives fusing sampling and matrix
multiplication/convolution
* Varying and adaptive sampling rates for different layers and iterations
e Studying other approximation algorithms
* Applications in resource-constrained environments
* Bridging the gaps between our theoretical results and what worked best in practice

* We believe that sample-based approximations and fast approximations in
general are valuable additions to the toolbox of techniques for deep

learning acceleration




