

Differentiable Quality Diversity

Authors: Matthew C. Fontaine and Stefanos Nikolaidis

S

Goal: Create an algorithm that ...

- Discovers a diverse collection of solutions
 - According to measure functions

Goal: Create an algorithm that ...

- Discovers a diverse collection of solutions
 - According to measure functions
- Where each solution should be high quality
 - According to an objective function

- According to measure functions
- Where each solution should be high quality
 - According to an objective function
- While efficiently leveraging gradients to solve both aspects

 $\nabla_z f$

CLIP

StyleGAN+CLIP

"A photo of Jennifer Lopez."

"Generating Images from Prompts using CLIP and StyleGAN" Perez (2021) "Learning Transferable Visual Models From Natural Language Supervision" Radford et. al. (2021) "A Style-Based Generator Architecture for Generative Adversarial Networks" Karras et. al. (CVPR 2019)

Our Prompt has Many Solutions

Age as a Spectrum

Age

Assume we are optimizing a space \mathbb{R}^n .

Given functions $f: \mathbb{R}^n \to \mathbb{R}$ and k measures $m_i: \mathbb{R}^n \to \mathbb{R}$ or as a vector function $m: \mathbb{R}^n \to \mathbb{R}^k$.

"Quality Diversity: A New Frontier for Evolutionary Computation" Pugh et. al. (2016) "Quality-Diversity Optimization: A Novel Branch of Stochastic Optimization" Chatzilygeroudis et. al. (2020)

Assume we are optimizing a space \mathbb{R}^n .

Given functions $f: \mathbb{R}^n \to \mathbb{R}$ and k measures $m_i: \mathbb{R}^n \to \mathbb{R}$ or as a vector function $m: \mathbb{R}^n \to \mathbb{R}^k$.

Measure Space: $S = m(\mathbb{R}^n)$ (approximated via tessellation)

Assume we are optimizing a space \mathbb{R}^n .

Given functions $f: \mathbb{R}^n \to \mathbb{R}$ and k measures $m_i: \mathbb{R}^n \to \mathbb{R}$ or as a vector function $m: \mathbb{R}^n \to \mathbb{R}^k$.

Measure Space: $S = m(\mathbb{R}^n)$ (approximated via tessellation)

Objective: For each $s \in S$ find $\theta \in \mathbb{R}^n$ such that $m(\theta) = s$ and $f(\theta)$ is maximized.

Assume we are optimizing a space \mathbb{R}^n .

Given functions $f: \mathbb{R}^n \to \mathbb{R}$ and k measures $m_i: \mathbb{R}^n \to \mathbb{R}$ or as a vector function $m: \mathbb{R}^n \to \mathbb{R}^k$.

Measure Space: $S = m(\mathbb{R}^n)$ (approximated via tessellation) Assumes f and m are black-boxes (derivative-free)

Objective: For each $s \in S$ find $\theta \in \mathbb{R}^n$ such that $m(\theta) = s$ and $f(\theta)$ is maximized.

QD Application: Diverse Agent Behavior

"Using CMA-ME to Land a Lunar Lander Like a Space Shuttle" Tjanaka et. al. (Pyribs.org 2021)

CViterbi

School of Engineering

StyleGAN+CLIP

Research Question

How can we leverage gradient information in a quality diversity algorithm?

Assume we are optimizing a space \mathbb{R}^n .

Given functions $f: \mathbb{R}^n \to \mathbb{R}$ and k measures $m_i: \mathbb{R}^n \to \mathbb{R}$ or as a vector function $m: \mathbb{R}^n \to \mathbb{R}^k$.

Measure Space: $S = f(\mathbb{R}^n)$

Objective: For each $s \in S$ find $\theta \in \mathbb{R}^n$ such that $m(\theta) = s$ and $f(\theta)$ is maximized.

The Differentiable Quality Diversity Problem

Assume we are optimizing a space \mathbb{R}^n .

Given differentiable functions $f: \mathbb{R}^n \to \mathbb{R}$ and kmeasures $m_i: \mathbb{R}^n \to \mathbb{R}$ or as a vector function $m: \mathbb{R}^n \to \mathbb{R}^k$.

Measure Space: $S = f(\mathbb{R}^n)$

Objective: For each $s \in S$ find $\theta \in \mathbb{R}^n$ such that $m(\theta) = s$ and $f(\theta)$ is maximized.

How do we derive DQD algorithms?

- Adapt ideas from derivative-free quality diversity algorithms
 - MAP-Elites
 - CMA-ME

MAP-Elites

"Illuminating Search Spaces by Mapping Elites" Mouret et. al. (2015)

The MAP-Elites Algorithm

- Sample initial solutions via a fixed distribution
- Uniform random selection of elites
- Perturb solutions with isotropic Gaussian noise

Benchmark Example (n = 20)

The MAP-Elites Algorithm

- Sample initial solutions via a fixed distribution
- Uniform random selection of elites
- Perturb solutions with isotropic Gaussian noise

$$\boldsymbol{\theta}' = \boldsymbol{\theta} + \sigma N(\mathbf{0}, I)$$

Benchmark Example (n = 20)

The MAP-Elites Algorithm

$$\boldsymbol{\theta}' = \boldsymbol{\theta} + \sigma N(\mathbf{0}, I)$$

Benchmark Example (n = 20)

Gradient Arborescence

Gradient Ascent

Viterbi

School of Engineering

Ascending Gradient Arborescence

"On the Shortest Arborescence of a Directed Graph" Chu et. al. (Science Sinica 1965)

MAP-Elites Operator

 $\boldsymbol{\theta}' = \boldsymbol{\theta} + \sigma N(\mathbf{0}, I)$

Gradient-based Variation Operator

 $\boldsymbol{\theta}' = \boldsymbol{\theta} + \sigma N(\mathbf{0}, I)$

$$\boldsymbol{\theta}' = \boldsymbol{\theta} + |c_0| \nabla f(\theta) + \sum_{i=1}^k c_i \, \nabla m_i(\theta)$$

Objective and Measure Gradient MAP-Elites via a Gradient Arborescence (OMG-MEGA)

 $\boldsymbol{\theta}' = \boldsymbol{\theta} + \sigma N(\mathbf{0}, I)$

$$\boldsymbol{\theta}' = \boldsymbol{\theta} + |c_0| \nabla f(\boldsymbol{\theta}) + \sum_{i=1}^k c_i \nabla m_i(\boldsymbol{\theta})$$
$$\boldsymbol{c} \sim N(\boldsymbol{0}, I)$$

OMG-MEGA fails to cover the measure space

Benchmark Example (n = 1000)

Can we frame QD as an optimization problem?

*5

Can we frame QD as an optimization problem?

Can we frame QD as an optimization problem?

$$f_{QD}(A) = \sum_{i=1}^{M} f(\theta_i)$$

 $\max f_{QD}$

Can we compute the gradient of f_{QD} ?

$$f_{QD}(A) = \sum_{i=1}^{M} f(\theta_i)$$

 $\max f_{QD}$

Can we compute the gradient of f_{QD} ?

$$f_{QD}(A) = \sum_{i=1}^{M} f(\theta_i)$$

 $\max f_{QD}$

 ∇f_{QD}

Gradients are steepest ascent

$$f_{QD}(A + \boldsymbol{\theta}') = \boldsymbol{f}(\boldsymbol{\theta}') - \boldsymbol{f}(\boldsymbol{\theta}_p) + \sum_{i=1}^{M} f(\boldsymbol{\theta}_i)$$

 $\max f_{QD}$

$\nabla_{\theta} f_{QD} = \theta'$ that maximizes archive change

Solve for a change in θ' to maximize f_{QD}

$$f_{QD}(A + \theta') = f(\theta') - f(\theta_p) + \sum_{i=1}^{M} f(\theta_i)$$

N *A*

$\max f_{QD}$

 $\nabla_{\theta} f_{QD} = \theta'$ which maximizes archive change

Approximate $\nabla_{\theta} f_{QD}$ via CMA-ES (derivative free)!

CMA-ES

- Models search directions as a multivariate Gaussian
- Updates Gaussian based on selecting and ranking best solutions
- Approximates a natural gradient descent of the objective modelled with uncertainty

"The CMA Evolution Strategy: A Tutorial" Nikolaus Hansen (2016) "Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies" Akimoto et. al. (2010)

CMA-ME (Covariance Matrix Adaptation MAP-Elites)

"Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space" Fontaine et. al. (GECCO 2020)

How do we leverage gradients?

How do we leverage gradients?

OMG-MEGA
operator
$$\boldsymbol{\theta}' = \boldsymbol{\theta} + c_0 \nabla f(\theta) + \sum_{i=1}^k c_i \nabla m_i(\theta)$$

How do we leverage gradients?

$$\boldsymbol{\theta}' = \boldsymbol{\theta} + c_0 \nabla f(\boldsymbol{\theta}) + \sum_{i=1}^k c_i \nabla m_i(\boldsymbol{\theta})$$

Approximates $\nabla_{\boldsymbol{c}} f_{QD}$ instead of $\nabla_{\boldsymbol{\theta}} f_{QD}$

CMA-MEGA Insight

We **branch** by sampling coefficients from a distribution $c \sim N(\mu, \Sigma)$ to **approximate** $\nabla_c f_{QD}$ and fill the archive with quality solutions at the same time.

Covariance Matrix Adaptation MAP-Elites via a Gradient Arborescence (CMA-MEGA)

Covariance Matrix Adaptation MAP-Elites via a Gradient Arborescence (CMA-MEGA)

CMA-MEGA versus state-of-the-art QD algorithms

StyleGAN+CLIP

StyleGAN+CLIP

A collage of high quality and diverse solutions

Intermediate Solutions (Cherry-picked)

5

Beyoncé Example

USC Viterbi School of Engineering

Beyoncé Example

R#S

Jennifer Lopez Example

USC Viterbi School of Engineering CAR*S

Takeaways

- Many papers at NeurIPS leverage gradients.
- Differentiable quality diversity (DQD) algorithms make efficient use of gradients.
- If a collection of high **quality** and **diverse** solutions is required, DQD may be a better tool than gradient descent.

Questions?

