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WE PROPOSE AN 


EFFICIENT EXACT SAMPLING METHOD 

FOR MULTI-TASK GPS 


THAT ENABLES SAMPLING OVER TENS OF 
THOUSANDS OF OUTPUTS!
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GAUSSIAN PROCESSES

▸ Nonparametric models over functions


▸ Extend multivariate gaussians to function spaces


▸ Latent function


▸ Predictive distribution is closed form (for regression)
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GAUSSIAN PROCESSES: PREDICTION

▸ The predictive distribution is given by:
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p(f⇤|X⇤, X, y) = N (µf |D,⌃f |D)
<latexit sha1_base64="e7zHJ8+hblc1CxmMRx64i6hGF4o="></latexit>
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MULTI TASK GAUSSIAN PROCESSES 

▸ Model multiple outputs that 
are related


▸ Typically separate data 
covariance from task 
covariance


▸
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Nt x nt matrix
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Posterior is not Kronecker structured

Nt x nt matrix

Cell tower interference: given location + angle 
of towers, how can we model power and 
interference?


50 x 50 x 2 tensors (5000 outputs)
(50*5000) x (50*5000)
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MULTI TASK GAUSSIAN PROCESSES: PREDICTION 
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Predictive distribution is closed form:

This matrix is no longer Kronecker structured, and it gets really big!

50 data points. 5000 outputs ==> ￼  is (50*5000) x (50*5000)Σ*
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MATHERON’S RULE FOR SAMPLING GAUSSIAN PROCESS POSTERIORS
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Can sample from conditional Gaussian random variables via Matheron’s rule (1970s)

For Gaussian processes, this becomes

Steps:


1) Draw ￼  from joint prior


2) Draw iid noise epsilon


3) Compute equation

( f*, Y )

From “Efficiently sampling functions from Gaussian Process posteriors,” Wilson et al, ICML, 2020
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MATHERON’S RULE: MULTITASK SETTING
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Can sample from conditional Gaussian random variables via Matheron’s rule (1970s)

Prior function comes from 

Which is structured (e.g. efficient sampling)

Pathwise update is a structured 
solve and a Kronecker MVM.

Posterior sampling is O(￼  + ￼ ) time rather than O(￼ ) time.n3 t3 n3t3
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EMPIRICAL RESULTS

￼10

LCEM: contextual multi-task GP

Fixed training points, results on CPU. 


Using Matheron’s rule allows efficient posterior sampling to 
many tasks and test points
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EMPIRICAL RESULTS
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LCEM: contextual multi-task GP

Fixed training points, results on GPU (less memory). 


Using Matheron’s rule allows efficient posterior sampling to 
many tasks and test points



BAYESIAN OPTIMIZATION WITH HIGH DIMENSIONAL OUTPUTS

APPLICATIONS OF GAUSSIAN PROCESSES

▸ Tuning expensive models


▸  (Bayesian optimization)


▸ Continual (e.g. time series) modeling
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From “Interferobot,” Sorokin et al, NeurIPS, 2020

From Benton et al, NeurIPS, 2019



BAYESIAN OPTIMIZATION WITH HIGH DIMENSIONAL OUTPUTS

BAYESIAN OPTIMIZATION INTRO

▸ Goal: 


▸ F is costly to evaluate


▸ Make minimal assumptions about 
problem


▸ X is low-dimensional


▸ Approach:


▸ Build a probabilistic surrogate model


▸ Suggest new points by optimizing an 
acquisition function on the surrogate
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From Shahriari et al, ‘16
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LARGE SCALE CONSTRAINED BAYESIAN OPTIMIZATION
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Goal: optimize function subject to black box constraints (model these as well)

51 Tasks! 101 Tasks! 69 Tasks!

Using Scalable Constrained Bayesian Optimization, Eriksson & Poloczek, UAI, ‘20
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LARGE SCALE COMPOSITE BAYESIAN OPTIMIZATION
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Objective is a nonlinear function of the responses:

Final objective value
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LARGE SCALE COMPOSITE BAYESIAN OPTIMIZATION
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LARGE SCALE COMPOSITE BAYESIAN OPTIMIZATION
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PAPER AT: HTTPS://ARXIV.ORG/ABS/2106.12997


CODE AT: BOTORCH.ORG

Thanks 
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Contact: wjm363 at nyu.edu

https://arxiv.org/abs/2106.12997
http://botorch.org
http://nyu.edu

