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Short summary of this talk

® We point out the inconsistency between self-supervised learning’s common

practice and an existing theoretical analysis.

® Practice: Large # negative samples don’t hurt classification performance.

® Theory: they hurt classification performance.

® We propose an novel analysis using Coupon
collector’s problem.
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Instance discriminative .
self-supervised representation learning

Goal: Learn generic feature encoder f, for example deep neural nets, for a
downstream task, such as classification.

Feature representations help a linear classifier to attain classification accuracy
comparable to a supervised method from scratch.



Overview of Instance discriminative
self-supervised representation learning

Draw K + 1 samples from an unlabeled dataset.

® X: anchor sample.

e X :negative sample. It can be a set of samples {x} };_,.
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Overview of Instance discriminative
self-supervised representation learning

Apply data augmentation to the samples:

e For the anchor sample X, we draw and apply two data augmentations a, a™.

® Fornegative sample X, we draw and apply single data augmentation a-.
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Overview of Instance discriminative
self-supervised representation learning

Feature encoder f maps augmented samples to feature vectorsh,h™, h™.
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Overview of Instance discriminative
self-supervised representation learning

® Minimize a contrastive loss given feature representations.

e sim(. - .): asimilarity function, such as cosine similarity.

s a feature extractor for a downstream task.

Contrastive loss function, ex. InfoNCE [1]:

exp[sim(h, h™)]

—in exp[sim(h, h*)] + exp[sim(h, h™)]

N egative X [1] Oord et al. Representation Learning with Contrastive Predictive Coding, arXiv, 2018.



Common technique: use large # negative samples K

By increasing # negative samples, learned f yields informative features for
linear classifier in practice.

For ImageNet, =
. MoCo [2]: K = 65 536. §\82'
. SIMCLR [3]: K = 8 190 or even more. ggo_
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[2] He et al. Momentum Contrast for Unsupervised Visual Representation Learning, In CVPR, 2020.

|3] Chen et al. A Simple Framework for Contrastive Learning of Visual Representations, In ICML, 2020.



A theory of contrastive representation learning

Informal bound [4] modified for self-supervised learning:

Leom® = (1 = 1) (L) + Ly(0) + 7 In(Col + 1)+ d(f).

Collison term

* 7. Collision probability that anchor’s label appears in negatives’ one.

o Ly, (f): Supervised loss with .

o L. ,(I): Supervised loss over subset of labels with 1.

* Col: the number of duplicated negative labels with the anchor’s label.

* d(f): a function of f, but almost constant term in practice.

|4] Arora et al. A Theoretical Analysis of Contrastive Unsupervised Representation Learning, In ICML, 2019.
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The bound of L, explodes with large K

® The bound on CIFAR-10, where # classes is 10 with K = 31:

® About 96 % samples contribute the collision term not related to the supervised loss due to 7.
e Plots rearranged upper bound: Ly,,(£) < (1 - T) ! [Lcont(f) — 7 In(Col + 1) — d(f)] — L, (D):
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Contributions: novel lower bound of contrastive loss

Informal proposed bound:

L. > % {0K+1Lsup(f) + (I — vgy )Ly (F) + In(Col + 1)} + d(1).

® Key idea: replace collision probability 7 with Coupon collector’s problem’s
probability v, ; that K + 1 samples’ labels include the all supervised labels.

® Additional insight: the expected K 4+ 1 to draw all supervised labels
from ImageNet-1K is about 7700.
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Upper bound of supervised loss

Our bound doesn’t explode

Arora et al.
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Conclusion

® We pointed out the inconsistency between self-supervised learning’s common
practice and the existing bound.

® Practice: Large K doesn’t hurt classification performance.

® Theory: large K hurts classification performance.

® We proposed the new bound using Coupon collector’s problem.

® Additional results:
® Upper bound of the collision term.

® Optimality when v = 0 with too small K.
® Experiments on a NLP dataset.
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