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Motivation

* Pre-determined backbone structures are the key

* Deep networks tend to be
e Overfitted
* Poorly calibrated with high confidence on incorrect predictions (Nguyen et al. 2015, Antoran et al.
2020)
e Current solutions

* Dropout and its variants (Srivastava et al. 2014, Gal et al. 2017, Lee et al. 2019)
e Structure selection methods (Srinivas et al. 2016, Dikov et al. 2019, Antoran et al. 2020)

* However,
e Cannot scale the network beyond the pre-determined structure

e Cannot achieve a balance between network depth and dropout regularization for uncertainty
calibration



Our proposed solution

 Model the depth (number of hidden layers) as a Beta Process
 Modulate neuron activations with a conjugate Bernoulli Process

 Joint inference of network depth and neuron activations
Beta process
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Beta-Bernoulli process over network structures

* Model the depth of a neural network as a Beta Process

» Stick breaking construction of beta-Bernoulli Process (Paisley et al. 2010, Broderick et al. 2012)
l

v; ~ Beta(a, ), T = 1_[ Vj, Zm ~ Bernoulli(m;)
j=1

* The prior over the network structures Z:
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Network structure with infinite layers

* A neural network has the form

hl = O'(wlhl_l) ®Zl + hl—l [ € {1,2,. . .,00}

* A Gaussian likelihood of the neural network for regression task

N
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Efficient inference

* The marginal Likelihood over network structures Z is

p(DIW, L, a, B)= f p(DIZ W) p(Z, v|o, B) dZdv

* Approximation with structured stochastic variational inference (Hoffman et al. 2013,
2015)

log p(D|W, L,a, B) = Eg(z4) [log p(DIZ, W)] — KL[q(Z| v)||p(Z|v)] — KL[q(W)||p(V)]

* We use truncation level K for the variational distribution

* Reparameterization of Beta and Bernoulli distribution (Jang et al. 2017, Maddison et al. 2017,
Jankowiak et al. 2018)

* We prove that optimizing ELBO is equivalent to Bayesian Information Criterion over the structure Z



Performance evaluation on synthetic data
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* If the training data size or its complexity increases, network structure grows to accommodate more
information.



Performance comparison on UCI datasets
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* Our method achieves the overall highest rank for both uncertainty calibration and prediction accuracy.



Effect of truncation level K
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* The truncation level (K) of our method does not affect the performance.
 The depth (L) of other methods significantly affects the performance and should be set carefully.



Effect of maximum width M
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e With smaller width M, our method results in deeper network structures to compensate for the

relatively narrow layers.
* As M increases, the structures become shallower.
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Case study on Continual learning
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Our method alleviates catastrophic forgetting by enabling network depth to dynamically augment to

accommodate incrementally available information.
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Conclusion

* General joint inference framework applicable for various neural networks

* Experimental results on MLPs and CNNs show that our method achieves superior
performance by adapting network depth and neuron activations

* Our model can accommodate incrementally available information by enabling neural
network structures to dynamically evolve

Thank youl!
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