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Motivation
• Pre-determined backbone structures are the key
• Deep networks tend to be

• Overfitted
• Poorly calibrated with high confidence on incorrect predictions (Nguyen et al. 2015, Antorán et al. 

2020)

• Current solutions 
• Dropout and its variants (Srivastava et al. 2014, Gal et al. 2017, Lee et al. 2019)
• Structure selection methods (Srinivas et al. 2016, Dikov et al. 2019, Antorán et al. 2020)

• However,
• Cannot scale the network beyond the pre-determined structure
• Cannot achieve a balance between network depth and dropout regularization for uncertainty 

calibration
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Our proposed solution
• Model the depth (number of hidden layers) as a Beta Process
• Modulate neuron activations with a conjugate Bernoulli Process
• Joint inference of network depth and neuron activations 
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A typical structure 
selection method  

A dropout variants Our proposed solution



Beta-Bernoulli process over network structures
• Model the depth of a neural network as a Beta Process

• Stick breaking construction of beta-Bernoulli Process (Paisley et al. 2010, Broderick et al. 2012)
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• A neural network has the form

• A Gaussian likelihood of the neural network for regression task
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Network structure with infinite layers

ℎ! = 𝜎 𝐖!𝐡!+$ ⨂𝐳! + 𝐡!+$ 𝑙 ∈ {1,2, . . . , ∞}
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Efficient inference
• The marginal Likelihood over network structures 𝐙 is

p(D|W, 𝐿, α, β)=Wp(D|Z, W) p(Z, 𝝂|α, β) dZd𝝂

• Approximation with structured stochastic variational inference (Hoffman et al. 2013, 
2015)

log p(D|W, 𝐿, α, β) ≥ 𝔼, 𝒁,𝝂 log 𝑝 𝐷 𝐙,𝐖 − KL[𝑞(𝐙| 𝝂)||𝑝(𝐙|𝝂)] − KL[𝑞(𝝂)||𝑝(𝝂)]

• We use truncation level 𝐾 for the variational distribution
• Reparameterization of Beta and Bernoulli distribution (Jang et al. 2017, Maddison et al. 2017, 

Jankowiak et al. 2018)
• We prove that optimizing ELBO is equivalent to Bayesian Information Criterion over the structure Z
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Performance evaluation on synthetic data
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• If the training data size or its complexity increases, network structure grows to accommodate more 
information.

Periodic dataset
(Increasing data sizes)

Spirals dataset
(Increasing complexity)



Performance comparison on UCI datasets
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• Our method achieves the overall highest rank for both uncertainty calibration and prediction accuracy.



Effect of truncation level 𝐾
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• The truncation level (𝐾) of our method does not affect the performance.
• The depth (𝐿) of other methods significantly affects the performance and should be set carefully.



Effect of maximum width 𝑀
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• With smaller width 𝑀, our method results in deeper network structures to compensate for the 
relatively narrow layers.

• As 𝑀 increases, the structures become shallower.



Case study on Continual learning
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• Our method alleviates catastrophic forgetting by enabling network depth to dynamically augment to 
accommodate incrementally available information.



Conclusion
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• General joint inference framework applicable for various neural networks

• Experimental results on MLPs and CNNs show that our method achieves superior 
performance by adapting network depth and neuron activations

• Our model can accommodate incrementally available information by enabling neural 
network structures to dynamically evolve

Thank you!


