
Training for the Future: A Simple
Gradient Interpolation Loss to

Generalize Along Time

Anshul Nasery*, Soumyadeep Thakur*, Vihari Piratla, Abir De, Sunita Sarawagi

IIT Bombay

* denotes Equal contribution

Modern ML Pipelines

Collect training data (e.g.
user clicks for a
recommender)

Refresh and retrain
model

Make extrapolated predictions for
the next time step (i.e. the next

day)

Discard model and get new data

Modern ML Pipelines
 Real world data often exhibits a temporal drift, making extrapolation challenging.

Train Test

House Prices

Training for the future
 Given labelled data points from source domains, and no data from target domain in the
immediate future

 Goal: Achieve high accuracy on target domain

...

Source (Train)

Example: Rotating two moons

Example: Rotating two moons

Training for the future
● Since we only care about performance at test time, the evaluation setup differs from

online learning.
● We do not have the entire trajectories of datapoints through time, rendering time

series methods difficult to apply

Training for the future
● Since we only care about performance at test time, the evaluation setup differs from

online learning.
● We do not have the entire trajectories of datapoints through time, rendering time

series methods difficult to apply.
● Our NN model hence has to infer the shifting decision boundary and extrapolate it

to the near future.

Related Work
 Our setting is closely related to continuous domain adaptation and predictive domain
adaptation.

 One class of methods for this problem tries to transform source data to target time using
Optimal transport[1], or kernel embeddings[2,3]. However these often need unlabelled target
data.

 [1] – Ortiz-Jiménez, Guillermo, et al. "Forward-backward splitting for optimal transport based problems." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020
[2] – Yang, Yongxin, and Timothy M. Hospedales. "Multivariate regression on the grassmannian for predicting novel domains." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[3] – Lampert, Christoph H. "Predicting the future behavior of a time-varying probability distribution." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

Related Work
 Another set of approaches treat model parameters as a function of time, using Gaussian Process
based smoothness on decision boundaries[5,6], or kernel smoothing on time sensitive NN
parameters[4].

 [4] – Mancini, Massimiliano, et al. "Adagraph: Unifying predictive and continuous domain adaptation through graphs." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
[5] – Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning non-linear dynamics of decision boundaries for maintaining classification performance." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.
[6] – Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning future classifiers without additional data." Thirtieth AAAI Conference on Artificial Intelligence. 2016.

Related Work
 A third kind of approach aims to learn time invariant representations for examples in an
adversarial manner[7].

[7] – Wang, Hao, Hao He, and Dina Katabi. "Continuously indexed domain adaptation." arXiv preprint arXiv:2007.01807 (2020).

Our Contributions
Our method is based on three key insights -

1. Need to have a time sensitive architecture
2. Need to somehow provide supervision on time stamps from the future
3. Need to regularize the temporal complexity of the learnt function

Time

Weight
Easy to overfit the temporal trend with
overparameterized neural nets!

Our Contributions
Our method is based on three key insights -

1. Need to have a time sensitive architecture
2. Need to somehow provide supervision on time stamps from the future
3. Need to regularize the temporal complexity of the learnt function

Time Sensitive Network

We use the Time2Vec [8] - captures complex dependencies such as periodicity

 8] – Kazemi, Seyed Mehran, et al. "Time2vec: Learning a vector representation of time." arXiv preprint arXiv:1907.05321 (2019).

Time Sensitive Network

We use the Time2Vec [8] - captures complex dependencies such as periodicity

A novel time dependent leaky ReLU whose threshold and slope is
computed by neural-nets taking time as input

 8] – Kazemi, Seyed Mehran, et al. "Time2vec: Learning a vector representation of time." arXiv preprint arXiv:1907.05321 (2019).

Time Sensitive Network

Our Contributions
Our method is based on three key insights -

1. Need to have a time sensitive architecture
2. Need to somehow provide supervision on time stamps from the future
3. Need to regularize the temporal complexity of the learnt function

Gradient Interpolation
 Despite using a time-sensitive architecture, ERM may overfit on - since there is
no relation or constraint between the predictions of the network on the different time stamps

 GI Loss:

Prediction loss Prediction loss on interpolated logits

Gradient Interpolation
 Despite using a time-sensitive architecture, ERM may overfit on - since there is no
relation or constraint between the predictions of the network on the different time stamps

 GI Loss:

 The second term provides “supervision” on nearby time steps and encourages smoother
functions.

 A negative δ also encourages extrapolation

 δ is chosen adversarially in a window of [-∆ , ∆]

Prediction loss Prediction loss on interpolated logits

1. Pre-train time sensitive network on train domains with ERM
2. Finetune using GI loss-

a. For each minibatch, sample δ uniformly between [-Δ,Δ].
b. Compute δ by doing k steps of gradient ascent on GI loss
c. Clamp δ in a window of [-Δ,Δ]
d. Use the value of δ obtained in the above step to compute GI loss for model.
e. Minimize GI loss obtained above through a single gradient descent step.

Training Algorithm

Synthetic Data: Rotating two moons

Need of time sensitivity

Need of time sensitivity

Average decision
boundary

Boundary changes
with time, but does
not capture dynamics
correctly

Can time invariant representations
work?

Might misclassify data
close to the decision
boundaryDoes not leverage

temporal information
fully, and does not
capture the rotation
dynamic well

•GI smooths out the w

j
(t) values to have a lower curvature

•Not equivalent to regularizing the gradients w.r.t time, i.e.

Can regularizing the gradient work?

Can regularizing the gradient work?

Does not
allow decision
boundary to
change
enough with
time

Our method

Captures temporal
dependencies of the
decision boundary

Learns rotation
by fitting
appropriate
functions at all
times

Data aware
regularization of time
varying decision
boundary

Experiments – Datasets

Experiments - Baselines
• ERM: Train a time-insensitive neural net on source data only

• LastDomain: Train a time-insensitive neural net on last source domain only

• IncFinetune: ERM on 1st source domain, finetune on subsequent domains

• Transformation based method - CDOT [1]

• Domain invariant representations - CIDA [8]

• Time sensitive network - Adagraph [4]

Experimental Results

• Just incremental fine-tuning where most recent data is seen last by the model is often a strong
baseline.

• The CIDA method that creates time-invariant representations shows improvements but in two
cases it is worse than incremental fine-tune.

• More data helps and
heuristically choosing a
suffix of available data may
be sub-optimal

Experimental Results - Ablations
 How does GI finetuning compare with other methods?

Experimental Results - Ablations
 How does GI finetuning compare with other methods?

Base-Time: ERM loss
with time-sensitive
network

GradReg: Gradient
Regularization

IncFinetune-Time: Incrementally finetune on preceeding domains with time-sensitive network

TimePerturb: Make time-sensitive network robust to time

Experimental Results - Ablations
 How well does TReLU work?

Experimental Results - Ablations
 How well does TReLU work?
• Start with a deep network with only ReLU activations

• Incrementally change the activations to TReLU starting from the deepest layer

 Even a single TReLU gives significant gains

Summary
● We proposed a time sensitive architecture and a gradient interpolated loss to enable

models to extrapolate to future data.
● Through extensive empirical evaluation on real world and synthetic datasets, we

demonstrate the efficacy of each component of our method over existing baselines.
● Future work would include reducing the time spent on computing δ, since it is the

main bottleneck in our method.

