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Modern ML Pipelines

Collect training data (e.g. 
user clicks for a 
recommender)

Refresh and retrain 
model

Make extrapolated predictions for 
the next time step (i.e. the next 

day)

Discard model and get new data



Modern ML Pipelines
 Real world data often exhibits a temporal drift, making extrapolation challenging.

Train Test

House Prices



Training for the future
 Given labelled data points from source domains, and no data from target domain in the 
immediate future

 Goal: Achieve high accuracy on target domain

...

Source (Train)



Example: Rotating two moons



Example: Rotating two moons



Training for the future
● Since we only care about performance at test time, the evaluation setup differs from 

online learning.
● We do not have the entire trajectories of datapoints through time, rendering time 

series methods difficult to apply



Training for the future
● Since we only care about performance at test time, the evaluation setup differs from 

online learning.
● We do not have the entire trajectories of datapoints through time, rendering time 

series methods difficult to apply.
● Our NN model hence has to infer the shifting decision boundary and extrapolate it 

to the near future.



Related Work
 Our setting is closely related to continuous domain adaptation and predictive domain 
adaptation.

 One class of methods for this problem tries to transform source data to target time using 
Optimal transport[1], or kernel embeddings[2,3]. However these often need unlabelled target 
data.

 [1] – Ortiz-Jiménez, Guillermo, et al. "Forward-backward splitting for optimal transport based problems." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020
[2] – Yang, Yongxin, and Timothy M. Hospedales. "Multivariate regression on the grassmannian for predicting novel domains." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
[3] – Lampert, Christoph H. "Predicting the future behavior of a time-varying probability distribution." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.



Related Work
 Another set of approaches treat model parameters as a function of time, using Gaussian Process 
based smoothness on decision boundaries[5,6], or kernel smoothing on time sensitive NN 
parameters[4].  

 [4] – Mancini, Massimiliano, et al. "Adagraph: Unifying predictive and continuous domain adaptation through graphs." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
[5] – Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning non-linear dynamics of decision boundaries for maintaining classification performance." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.
[6] – Kumagai, Atsutoshi, and Tomoharu Iwata. "Learning future classifiers without additional data." Thirtieth AAAI Conference on Artificial Intelligence. 2016.



Related Work
 A third kind of approach aims to learn time invariant representations for examples in an 
adversarial manner[7]. 

 
[7] – Wang, Hao, Hao He, and Dina Katabi. "Continuously indexed domain adaptation." arXiv preprint arXiv:2007.01807 (2020).



Our Contributions
Our method is based on three key insights - 

1. Need to have a time sensitive architecture
2. Need to somehow provide supervision on time stamps from the future
3. Need to regularize the temporal complexity of the learnt function

Time

Weight
Easy to overfit the temporal trend with 
overparameterized neural nets!
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Time Sensitive Network

We use the Time2Vec [8] - captures complex dependencies such as periodicity

 8] – Kazemi, Seyed Mehran, et al. "Time2vec: Learning a vector representation of time." arXiv preprint arXiv:1907.05321 (2019).



Time Sensitive Network

We use the Time2Vec [8] - captures complex dependencies such as periodicity

A novel time dependent leaky ReLU whose threshold and slope is 
computed by neural-nets taking time as input

 8] – Kazemi, Seyed Mehran, et al. "Time2vec: Learning a vector representation of time." arXiv preprint arXiv:1907.05321 (2019).



Time Sensitive Network



Our Contributions
Our method is based on three key insights - 

1. Need to have a time sensitive architecture
2. Need to somehow provide supervision on time stamps from the future
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Gradient Interpolation
 Despite using a time-sensitive architecture, ERM may overfit on                       -       since there is 
no relation or constraint between the predictions of the network on the different time stamps

 GI Loss:

Prediction loss Prediction loss on interpolated logits



Gradient Interpolation
 Despite using a time-sensitive architecture, ERM may overfit on                       -  since there is no 
relation or constraint between the predictions of the network on the different time stamps

 GI Loss:

 The second term provides “supervision” on nearby time steps and encourages smoother 
functions. 

 A negative δ also encourages extrapolation

 δ is chosen adversarially in a window of [-∆ , ∆]

Prediction loss Prediction loss on interpolated logits



1. Pre-train time sensitive network on train domains with ERM
2. Finetune using GI loss-

a. For each minibatch, sample δ uniformly between [-Δ,Δ].
b. Compute δ by doing k steps of gradient ascent on GI loss
c. Clamp δ in a window of [-Δ,Δ]
d. Use the value of δ obtained in the above step to compute GI loss for model.
e. Minimize GI loss obtained above through a single gradient descent step.

Training Algorithm 



Synthetic Data: Rotating two moons



Need of time sensitivity



Need of time sensitivity

Average decision 
boundary

Boundary changes 
with time, but does 
not capture dynamics 
correctly



Can time invariant representations 
work?

Might misclassify data 
close to the decision 
boundaryDoes not leverage 

temporal information 
fully, and does not 
capture the rotation 
dynamic well



 
•GI smooths out the w

j
(t) values to have a lower curvature

•Not equivalent to regularizing the gradients w.r.t time, i.e.

Can regularizing the gradient work?



Can regularizing the gradient work?

Does not 
allow decision 
boundary to 
change 
enough with 
time



Our method

Captures temporal 
dependencies of the 
decision boundary

Learns rotation 
by fitting 
appropriate 
functions at all 
times

Data aware 
regularization of time 
varying decision 
boundary



Experiments – Datasets 



Experiments - Baselines
• ERM: Train a time-insensitive neural net on source data only

• LastDomain: Train a time-insensitive neural net on last source domain only

• IncFinetune: ERM on 1st source domain, finetune on subsequent domains

• Transformation based method - CDOT [1]

• Domain invariant representations - CIDA [8]

• Time sensitive network - Adagraph [4]



Experimental Results

• Just incremental fine-tuning where most recent data is seen last by the model is often a strong 
baseline. 

• The CIDA method that creates time-invariant representations shows improvements but in two 
cases it is worse than incremental fine-tune.

• More data helps and  
heuristically choosing a 
suffix of available data may 
be sub-optimal



Experimental Results - Ablations
 How does GI finetuning compare with other methods?



Experimental Results - Ablations
 How does GI finetuning compare with other methods?

Base-Time: ERM loss 
with time-sensitive 
network

GradReg: Gradient 
Regularization

IncFinetune-Time: Incrementally finetune on preceeding domains with time-sensitive network

TimePerturb: Make time-sensitive network robust to time



Experimental Results - Ablations
 How well does TReLU work?



Experimental Results - Ablations
 How well does TReLU work?
• Start with a deep network with only ReLU activations

• Incrementally change the activations to TReLU starting from the deepest layer

 Even a single TReLU gives significant gains 



Summary
● We proposed a time sensitive architecture and a gradient interpolated loss to enable 

models to extrapolate to future data.
● Through extensive empirical evaluation on real world and synthetic datasets, we 

demonstrate the efficacy of each component of our method over existing baselines.
● Future work would include reducing the time spent on computing δ, since it is the 

main bottleneck in our method.


