Training for the Future: A Simple
Gradient Interpolation Loss to
Generalize Along Time

Anshul Nasery*, Soumyadeep Thakur*, Vihari Piratla, Abir De, Sunita Sarawagi

IIT Bombay

Modern ML Pipelines

5 9
5 8
4 - 7
3 - _B 6
2 5
1 . B . .
0)) S
ORI e 2
< () < ())
& & & &S (1) |
TimeStep5
Collect training data (e.g. Refresh and retrain Make extra.polated pljedlctlons for
: the next time step (i.e. the next
user clicks for a model
day)
recommender)

Discard model and iet new data

Modern ML Pipelines

Real world data often exhibits a temporal drift, making extrapolation challenging.

House Prices

1000000 { Bedrooms

S
9000001 — 4

800000

700000 1

600000 1

400000 1

2007 2009 011 2013 2015 2017 2019
saledate
\]
|
Train Test

Training for the future

Given labelled data points from source domains, and no data from target domain in the
immediate future

Goal: Achieve high accuracy on target domain

Train Deploy
Day 1 Day 2 Day T Day T + 1
Arrow of Time

Example: Rotating two moons

18°

Train model

2 2 3 .
x " - w— 21| s :
I 2% WA E I o) ks R e
£ ogg\® |5 © g g ? g ° 2’ ‘?
£ 5, g,

2 -3 2 -2

-3 =l 0 1 2 2 1 0 1 2 -2 -1 0 1 2 = -1 0 1 2
feature x, feature x,

énurex, T=9 T+1

1

Example: Rotating two moons

18°

Train model

2 2 3 .
x " - w— 21| s :
I 2% WA E I o) ks R e
£ ogg\® |5 © g g ? g ° 2’ ‘?
£ 5, g,

2 -3 2 -2

-3 =l 0 1 2 2 1 0 1 2 -2 -1 0 1 2 = -1 0 1 2
feature x, feature x,

énurex, T=9 T+1

1

Training for the future

e Since we only care about performance at test time, the evaluation setup differs from
online learning.

e We do not have the entire trajectories of datapoints through time, rendering time
series methods difficult to apply

to £ tx Ingr tag
- - - [
Prediction Extrapolation

Training for the future

e Since we only care about performance at test time, the evaluation setup differs from
online learning.

e We do not have the entire trajectories of datapoints through time, rendering time
series methods difficult to apply.

e Our NN model hence has to infer the shifting decision boundary and extrapolate it
to the near future.

I : | i ; \
decision :
buund'm

hy hr+1 hyyo

7// \\

1 T+2 Time

Related Work

Our setting is closely related to continuous domain adaptation and predictive domain
adaptation.

One class of methods for this problem tries to transform source data to target time using
Optimal transport[1], or kernel embeddings[2,3]. However these often need unlabelled target

data.

Dataset Optimal transport Classification on transported samples

\, ++ Class 1
O % OO0 Class 2
O "._ 4"-0“ Samples x{

o ’—' Samples x§
—— Classificr on T, (x{)

= Classifier onx]

Related Work

Another set of approaches treat model parameters as a function of time, using Gaussian Process
based smoothness on decision boundaries[5,6], or kernel smoothing on time sensitive NN

parameters[4].
Learning with Dy, ..., Dy Prediction
l [i . |
decision
huundan'

hr hryr hrys

[/7—=\1.
N

Related Work

A third kind of approach aims to learn time invariant representations for examples in an
adversarial manner([7].

Ideally, after training

Our Contributions

Our method is based on three key insights -

1. Need to have a time sensitive architecture
2. Need to somehow provide supervision on time stamps from the future
3. Need to regularize the temporal complexity of the learnt function

15

Weight
& Easy to overfit the temporal trend with

overparameterized neural nets!

Our Contributions

Our method is based on three key insights -

1.
2.
3.

Need to have a time sensitive architecture

Need to somehow provide supervision on time stamps from the future
Need to regularize the temporal complexity of the learnt function

Time Sensitive Network

We use the Time2Vec [8] - captures complex dependencies such as periodicity

_ Jwat + b 1 <a < m,
Tela] = {sin (Wet + bs) mp < a < m t— / T

WA N

Time Sensitive Network

We use the Time2Vec [8] - captures complex dependencies such as periodicity

Tea] = {sin (Wet + by) mp < a < m t— 5\ — Tt

A novel time dependent leaky ReLU whose threshold and slope is

computed by neural-nets taking time as input " — st /
hy(r) © (X - g¢(7't)) + v(1e) x < gyu(7) ’

TReLU 4(x, t) = 1 |
ot = { N

Time Sensitive Network
L ox] t]

. 7 la] = wgat + by 1 <a < m,

‘ S Tt = sin (Wat + b)) my < a < m
' A4
‘ NN Layer Tt
{ , __
l TReLU]IL_ > TRGLU¢(X, t) _ {h¢(Tt) © (X _ gqb(Tt)) + V(Tt) X < g¢(Tt)
| x x > gy()
| NN Layer
{ .
| TReLU |le—

l
D

Our Contributions

Our method is based on three key insights -

1.
2.
3.

Need to have a time sensitive architecture

Need to somehow provide supervision on time stamps from the future
Need to regularize the temporal complexity of the learnt function

Gradient Interpolation

Despite using a time-sensitive architecture, ERM may overfit on DI ... DT - sincethereis
no relation or constraint between the predictions of the network on the different time stamps

Gl Loss:

jG’I(y; FH(Xa t)) — l(y; Fg(x, t)) + Al (y; Fe(x, t — 5) + 0 OFy (git—5)>

4 S

Prediction loss Prediction loss on interpolated logits

Gradient Interpolation

Despite using a time-sensitive architecture, ERM may overfit on D! ... D7 - since there is no
relation or constraint between the predictions of the network on the different time stamps

Gl Loss:
Jar(y; Fo(x, 1) = U(y; Fy(x, t)) + Al (y; Fo(x,t—6) + 9 OFy (gét—6)>

4) S

Prediction loss Prediction loss on interpolated logits

The second term provides “supervision” on nearby time steps and encourages smoother
functions.

A negative O also encourages extrapolation

O is chosen adversarially in a window of [-A , A]

Training Algorithm

1. Pre-train time sensitive network on train domains with ERM

2. Finetune using Gl loss-

For each minibatch, sample ® uniformly between [-A,A].

Compute O by doing k steps of gradient ascent on Gl loss

Clamp O in a window of [-A,A]

Use the value of 0 obtained in the above step to compute Gl loss for model.
Minimize Gl loss obtained above through a single gradient descent step.

P20 T

Synthetic Data: Rotating two moons

18° _
Train model

2 2 2
§ };‘% s |81 ey ¥ § ! ”‘*t* § ! Qm'h‘
g g z.”-' -‘-é"!" g 0 i‘ -'k“.;’;;a g 0 3:3 £ o
E —— Bl ML i, ? %
-2 -2

= 0 1 -3 -1 0
feature x, feature x,

2" T'=9 T4 1

1

Need of time sensitivity

@ T-=-10y=-1 @ T1T-=10y=1 @ T-=-7y=-1 T=7y=1

baseline

B 0th - Class 0
2 4 B 10th - Class |
I 7th- Class 0

Tth - Class 1

Need of time senS|t|V|ty

@ T-=-10y=-1 @ T-=-10y=1 @ T-7y=-1 T=7y=1

Inc Finetune

baseline
B 0th - Class 0 B 0th-Class 0
2 4 B 10th - Class | 2 4 Bl 10th - Class |
B Tth- Class 0

B 7th - Class 0 Average decision
7th - Class 1 / 7th - Class 1
boundary

0 Jj —

Boundary changgg//

with time, but does
not capture dynamics
correctly

2 —2T 5 0 2

Can time invariant representations
work?

@ T-=-10y=-1 @ T-=-10y=1 @ T-7y=-1 T=7y=1
PCIDA

H 10th - Class 0
2 B 10th - Class |
o Tth- Class 0
Tth - Class |
1 | *ve & .:0 2 . . .
PN 54 ...g 99 Might misclassify data
..?.i..f £ %0 ————— close to the decision
Does not leverage O+—— :«%‘ .- 5 boundary
i ; A o
temporal information & o A2
fully, and does not ® Ay .*
capture the rotation —1 1 Sewy e
dynamic well

Can regularizing the gradient work?

* Gl smooths out the Wj(t) values to have a lower curvature
* Not equivalent to regularizing the gradients w.r.t time, i.e.

3F9 (X, t)
ot

Jar(Y; Fo(x, t)) = Uy; Fo(x,t)) + A

2

Can regularizing the gradient work?

@ T-=-10y=-1 @ T1T-=10y=1 @ T-=-7y=-1 P =T3=1
Grad Reg
Bl 0th - Class 0
2 A B 10th- Class |

I 7th- Class 0

Tth - Class 1

Does not
allow decision
boundary to
change
enough with
time

Our method

Bl 10th - Class 0

2 L] B 0th - Class 1
I Tth- Class 0
Tth - Class 1

Captures temporal
dependencies of the
decision boundary

Learns rotation
by fitting
appropriate
functions at all
= times

\ Data aware

regularization of time
J, : , varying decision

—2 0 2 boundary

Experiments — Datasets

Dataset Type 7 Ns nt.1 Features
2-Moons Classification 9 1800 200 2
Rot-MNIST Classification 4 4000 1000 -
ONP Classification 5 32,595 7049 58
Elec? Classification 30 27549 673 38
House Regression 6 20937 1385 3
M5-Hob Regression 35 124,100 5,100 78
Mb5-House Regression 35 323,390 27,466 78

Experiments - Baselines

* ERM: Train a time-insensitive neural net on source data only

 LastDomain: Train a time-insensitive neural net on last source domain only
* IncFinetune: ERM on 1st source domain, finetune on subsequent domains
* Transformation based method - CDOT [1]

* Domain invariant representations - CIDA [8]

* Time sensitive network - Adagraph [4]

Experimental Results

Classification Regression
Method 2-Moons |Rot-MNIST| ONP Shuttle Elec2 House M5-Hob | M5-House
Baseline 2244+46] 18.6+4.0 |33.84+0.6/0.77 =0.10{23.0£3.1|11.04+0.36/0.27 +=0.10{0.24 £+ 0.08
LastDomain|14.94+0.9| 17.24+3.1 {36.04+-0.2{0.91 £0.18|25.84+0.6[10.3 +0.16|2.72+0.75|3.17 - 1.54
IncFinetune [16.7 +3.4| 10.1 £0.8 [34.0£+0.3|0.83 +0.07|27.3 +£4.2| 9.74+0.01 {0.124+0.05/0.17 £0.10
CDOT 934+1.0| 142+1.0 [34.1£0.0/0.94+0.17|17.8+£0.6 - - -
CIDA 108+ 1.6| 93+0.7 [3474+0.6/ DNC [14.1+0.2]9.7+£0.06 |0.40+0.07]0.58 +0.11 * More data helps and
Adagraph [8.0+1.1| 994+1.0 [40.94+0.6{0.47£0.04|20.1 2.2/ 9.7+0.10 |1.64 +0.28|0.87 £ 0.14 heuristically choosing a
GI 35+14| 77+1.3 [349+0.4{0.294+0.05/16.9+0.7| 9.6 = 0.02 [0.09 £ 0.03|0.05 + 0.02

suffix of available data may

Table 1: Comparison of our proposed method against existing methods on all the seven datasets be sub-optimal

in terms of misclasssication error (in %)for first four datasets and mean absolute error (MAE) for
last three datasets. The standard deviation over five runs follows the 4+ mark. We observe that GI
outperforms almost all the baselines.

* Just incremental fine-tuning where most recent data is seen last by the model is often a strong
baseline.

* The CIDA method that creates time-invariant representations shows improvements but in two
cases it is worse than incremental fine-tune.

Experimental Results - Ablations

How does Gl finetuning compare with other methods?

Experimental Results - Ablations

How does Gl finetuning compare with other methods?

Ablation 2-Moons |Rot-MNIST| Elec2 | Shuttle | M5-Hob | M5-House D2s€-Time: ERM loss
Base-Time 11087 103500 (185117061 L0.14[035L0.00[029L0.14 Withtime-sensitive
IncFinetune-Time| 6.9+33 | 92409 |19.9+1.4[0.52+0.12/0.10+0.04/0.07+£0.02 hetwork

Grad-Reg 112+346| 11.5+1.5 263+ 1.8/0.73+0.150.90 +0.56|2.57 + 1.01

TimePerturb 33040 | 9907 |17.3+0.6/0.67+0.06/0.09+0.01/0.11£0.04 GradReg: Gradient
GI 354137 | 77413 [169:407/0.29+0.050.09+0.03(0.05+0.01 oo o

Table 2: Ablation study. Comparison of performance between our method and four alternatives across
four datasets for classification task and two datasets for regression task.

IncFinetune-Time: Incrementally finetune on preceeding domains with time-sensitive network

TimePerturb: Make time-sensitive network robust to time

Experimental Results - Ablations

How well does TReLU work?

Experimental Results - Ablations

How well does TRelLU work?
* Start with a deep network with only ReLU activations

* Incrementally change the activations to TReLU starting from the deepest layer

14 —— R-MNIST —— HousingPrices
9.80

BError—r
= —
N w
Error—
©
N1
=

ey

[
©
N1
(=

9.65

Jun
(=]

1 2 3 4 1 2 3
Number of TimeReLU units— Number of TimeReLU units—

Even a single TReLU gives significant gains

Summary

We proposed a time sensitive architecture and a gradient interpolated loss to enable
models to extrapolate to future data.

Through extensive empirical evaluation on real world and synthetic datasets, we
demonstrate the efficacy of each component of our method over existing baselines.
Future work would include reducing the time spent on computing 0, since it is the
main bottleneck in our method.

