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MOTIVATION: KIDNEY ALLOCATION WAITLIST

or

Transplant (tx) quality

Ex ante 
unknown

Information about quality

Public

Private
Good    Bad

1. Organ score

P {successful tx} based on organ features 

(e.g., size, donor age)

2.  Doctors’ private opinions

Based on their own experience / knowledge
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MOTIVATION: KIDNEY ALLOCATION WAITLIST

Waitlist (patients / doctors)

● Patients waiting for an organ offer 

● Upon receiving offer, each patient decides to accept or decline

● Or in most cases, his or her doctor makes decision

● Social planner decides whether / how to make the offers

i.e. Utilize good organs and discard bad organs

Planner’s Goal:
Optimize overall tx quality

Patient / Doctor’s Goal:
Optimize my tx quality

...

No No Yes

Planner
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BASELINE: FIRST-COME-FIRST-SERVE MECHANISM

What could go wrong?

X To k-th agent: 

availability of object implies previous (k-1) agents have declined it

X Induces herding behavior → incorrect discard of objects

X In kidney allocation: > 20% discard rate, while ~3.6yr wait time

(De Mel et al. (2020), Mohan et al. (2018), Zhang (2010) for empirical evidence)

● Commonly used  -- aka Sequential Offering

● Object offered to each agent sequentially one-by-one
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MAIN PROBLEM AND RESULTS

Q: Given a single indivisible object of unknown quality,
whether and how to allocate it to a queue of 

privately informed and strategic and agents?

I.e., How to balance planner’s learning and agents’ strategic incentives?
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MAIN PROBLEM AND RESULTS

A:

1. FCFS can cause welfare loss due to herding

2. Propose a new class of mechanisms involving dynamic batched voting to 

crowdsource private information, and show existence of such mechanisms that 

improve welfare

3. Simple greedy algorithm to achieve this improvement
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RELATED LITERATURE

Social Learning
• Banerjee (1992), Bikhchandani et al. (1992)
• In kidney markets: De Mel et al. (2020), Mohan et al. (2018), Zhang (2010)

Voting
• Austen-Smith and Banks (1996), Condorcet (1785)

Information Design / Bayesian Exploration
• Arieli et al. (2018) , Kamenica and Gentzkow (2011), Papanastasiou et al. (2017)
• Glazer et al. (2021), Immorlica et al. (2019), Kremer et al. (2014), Mansour et al. (2016)
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MODEL
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Agents

SET UP

Object

● Single indivisible object
● Quality: 𝜔 ∈ {G, B}

fixed and ex-ante unknown
● Prior: μ = P (w=G)

commonly known

For each agent in position i
● Private signal: 𝑠! ∈ {𝑔, 𝑏}
● Precision of signal:

q = P (𝑠!=g | w=G) = P (𝑠! =b | w=B) ∈ (1/2,1)
commonly known

● Utility: 

*
1
−1
0

with object and 𝜔 = 𝐺
with object and 𝜔 = 𝐵
without object
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Planner’s goal

SET UP

1. Asks (a batch of) agents to report private signals
2. Decides whether and how to allocate the object

Design a mechanism to maximize Pr {correct allocation outcome}

e.g., FCFS, Lottery…

We propose a new class of mechanisms

Allocate if 𝜔 = 𝐺
Discard if 𝜔 = 𝐵
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𝐾! = 5𝐾" = 3

VOTING MECHANISMS

● Idea: batch-by-batch dynamic voting to crowdsource information

● For each batch j:
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𝐾# = 1

No No Yes No No Yes Yes No Yes

...

1. Offer to a batch of 𝑲𝒋 agents
2. Each agent simultaneously votes to opt in or opt out.
3. If majority opts in: Allocate object uniformly at random. 

Otherwise: Move on to batch j+1. 
Results from batch j become public.

Batch size K$ can be 
chosen dynamically
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VOTING MECHANISMS

● Idea: batch-by-batch dynamic voting to crowdsource information

● For each batch j:

Kang, Monachou, Koren, Ashlagi (NeurIPS 2021)

1. Offer to a batch of 𝑲𝒋 agents
2. Each agent simultaneously votes to opt in or opt out
3. If majority opts in: Allocate object uniformly at random. 

Otherwise: Move on to batch j+1. 
Results from batch j become public.

Batch size K$ can be 
chosen dynamically

Sequential → Batch

Randomness
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VOTING MECHANISMS
FCFS is also a voting mechanism (𝐾# = 1 for all j)

We restrict our attention to the class of voting mechanisms
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𝐾"𝐾#

...

𝐾!
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Main problem reduces to: 

How to dynamically choose batch size 𝐾#? 



RESULTS
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FCFS: HAMPERED LEARNING W/ WRONG BATCH SIZE (K=1)

0 1-q 1/2 q 1

Prior µ
(= P ω = G )

Always discarded
Discarded if agent 1 

has s# = b

Discarded if both 
agents 1 and 2 have 

s# = s" = b
Always accepted

by agent 1

Figure 1.  Allocation outcome of the sequential offer mechanism based on the 
value of prior μ ∈ (0, 1) with respect to signal precision q. 

• In this extreme case, planner can learn from only up to two agents
• Restricted learning leads to poor correctness and welfare loss
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BALANCING AGENTS’ INCENTIVES vs PLANNER’S LEARNING

Small batch size Large batch size

Every vote is pivotal: in particular, 
incentivizes agents with 𝑠! = 𝑏 signals to 
truthfully opt out

More data points: gives confidence that if 
object is allocated, then it is likely that 
quality is good 

If too small, allocation depends on learning 
from insufficient sample size

If too large, everyone is incentivized to opt in

• Presence of incentives puts upper bound on # of private signals  planner can learn from

• Optimal batch size is the maximum batch size that agents’ incentives allow (i.e., IC is tight)
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Theorem 1. 
• For any 𝒒 > 𝝁, there always exists a voting mechanism V ∈ 𝒱 that is incentive-

compatible and improves correctness compared to the sequential offering 
mechanism 𝑉!"#. 

• For any 𝑞 ≤ 𝜇, there is no incentive-compatible voting mechanism and any V ∈ 𝒱
achieves the same correctness as 𝑉!"#. 

Corollary 1. 
• For any 𝑞 > 𝜇, such a mechanism can be found using a greedy algorithm.

MAIN THEORETICAL RESULTS
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Figure 2.  Optimal batch sizes for all possible priors 𝜇 for three information regimes 𝑞 ∈ {0.6, 0.7, 0.8}

*
High µ → Small K*

High q → Small K*

TIGHTER INCENTIVES FOR THE WELL-INFORMED (HIGH q) 
AND OPTIMISTIC (HIGH 𝝁) (Formal proofs and results in the paper)
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Figure 3.  Comparison of correctness in different mechanisms simulated with 345 agents. 

Voting

FCFS
Non-strategic

Voting

FCFS
Non-strategic

VOTING WORKS WELL, EVEN IN ITS SIMPLEST FORM

For µ < q, there’s always a voting 
mechanism that outperforms FCFS

Kang, Monachou, Koren, Ashlagi (NeurIPS 2021) 18



Figure 3.  Comparison of correctness in different mechanisms simulated with 345 agents. 

Voting

FCFS
Non-strategic

VOTING WORKS WELL, EVEN IN ITS SIMPLEST FORM

For µ < q, there’s always a voting 
mechanism that outperforms FCFS

Kang, Monachou, Koren, Ashlagi (NeurIPS 2021) 19



CONCLUSION
Main takeaways
● Tension between:   Planner’s learning goal vs Agents’ strategic incentives
● How to incorporate voting into mechanism design to mitigate this tension
● In particular, by introducing batching and randomness
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Limitations
● This is a stylized model!
● Fairness? Voting mechanism (partly) breaks priority for better welfare

Implications
● Bayesian risk adjustment for organ allocation markets
● Analysis of learning problems with strategic samples
● Resembles exploitation vs exploration
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