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Motivation
• A phenomenological approach for deep learning.

• We want

– Big pictures instead of overly-complicated details;

– Intuitive methods, though may not be fully rigorous without further work;

– Guidance for future research toward demystifying deep models.
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Overview
• Inspired by the local elasticity (LE, [HS20, DHS21, CHS20]) phenomenon: training on a sample x
has a greater effect on samples that are similar to it than on those dissimilar to it.

• How to encode this in our model?

• If at the m-th iteration, the l-th sample from the first class is trained, we model{
X1i (m) = X1i (m − 1) + h · αX1l (m− 1) + noise,

X2j (m) = X2j (m − 1) + h · βX1l (m− 1) + noise.
(1)

• Then the emergence of LE can be understood as γ := α− β being large.
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Model Overview (1/2)
• The LE-SDE: modeling feature dynamics with LE.

dX̃(t) = M(t)X̃(t)dt +Σ(t)dBt, (2)

where X̃(t) = (X̃k(t))Kk=1 ∈ RKp is the concatenation of p-dimensional feature vectors from K
classes. We model the drift

M(t) = (E(t)⊗ P) ◦ H (3)

where the LE matrix E(t) ∈ RK×K models the strength of LE, the sampling matrix P ∈ RK×K

models sampling effects, and a “similarity matrix” H ∈ RKp×Kp (as a K-by-K block matrix) that
models the direction features interacts under LE.

The simplest LE matrix can be set to be one with α(t) (intra-class effects) on its diagonal and β(t)
(inter-class effects) elsewhere.
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Model Overview (2/2)
• The LE-ODE: dynamics on mean features X̄ = EdataX̃:

dX̄(t) = M(t)X̄(t)dt = ((E(t)⊗ P) ◦ H) X̄(t)dt. (4)

E.g., given P = 1K×K/K and the two-parameter LE E(t),
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Main Results
• Separation Theorem: features are asymptotically linearly separable if there is LE (“α(t) > β(t)”)
for PSD H with positive diagonals.

• Modeling choices for H = (Hij)ij matrix.

Model Hij Remark

I-model Ip Isotropic Feature Model

L-model H̄j = djd⊤j / ‖dj‖22 Logits-as-Features Model

Table 1: Modeling choices for H, where dj = ej − 1
K 1p for j ∈ [K].

• Simulating genuine dynamics with the LE matrix estimated.
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The Separation Theorem
Theorem (Separation of LE­SDE)
Suppose γ(t) = α(t)− β(t) > 0, assume H = (Hij)ij is positive semi-definite (PSD) with positive
diagonal entries. As t → ∞, we have
1. if γ(t) = ω (1/t), the features are separable with probability tending to 1;
2. if γ(t) = o (1/t), and the number of per-class-feature n tending to∞ at an arbitrarily slow rate, the

features are asymptotically pairwise separable with probability 0.

Here, γ(t) = ω (1/t) stands for γ(t) � 1/t as t → ∞. For example, 1/t0.5 = ω (1/t) and
(t ln t)−1 = o (1/t) as t → ∞.
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Proof Sketch
• Substituting back the solution of the LE-ODE

X̄t = X̄0 +

Kp∑
i=1

ciui e
µi t, X̄0 =

Kp∑
i=1

ciui, (6)

to the LE-SDE, we have
X̃k
(t) = X̃k

(0) + MtX̄(t) − E[X̃k
(0)] + Σ
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k (t)Wk
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k Wk
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(7)

• To prove separation, it suffices to identify a direction ν such that
〈
X̃k
(t) − X̃l

(t), ν
〉

> 0, w.p. → 1 as t → ∞, ∀k ̸= l. (8)

• Using Gaussian tail bound to obtain the rates; using nullity theorems to show ν can be chosen
independent of the class indices.
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Corollary
Neural collapse [PHD20, FHLS21] is a recent phenomenological finding on the geometry of logits of
DNNs at convergence: they tend to form equiangular tight frames (ETFs).

Proposition (Neural Collapse of the LE­ODE)
Under L-model and the same setup as in Theorem 1, if γ(t) > 0 and there exists some T > 0 such that

B(t) < 0 for t ≥ T, then
{
X̄k(t)/‖X̄k(t)‖

}K

k=1
forms an ETF as t → ∞.
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Justifications for Linearization (1/5)
• The genuine dynamics of logits.

Xk
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• First approximation: decoupling in an expectation.
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Justifications for Linearization (2/5)
• Linearize the drift F around the mean at each time.

F(X̃(t), t) := Θ(t)

([
ek − σ(X̃

k
(t))

]K

k=1

)
, (11)

F(X̃(t), t) ≈ F̃(X̃(t), t) := F(φ(t), t) +∇XF(φ(t), t)
(
X̃(t)− φ(t)

)
, (12)

where φ(t) := X̄(t), J = ∇XF = J is a block diagonal matrix J = (Jkk) with
Jkk = Jk := diag(p̄k)− p̄kp̄T

k, here we write

p = (pk)
K
k=1 ∈ RKp, pk := σ(X̃

k
(t)) ∈ Rp, k ∈ [K], (13)

and similarly
p̄ = (p̄k)

K
k=1 ∈ RKp, p̄k := σ(X̄k(t)) ∈ Rp, k ∈ [K]. (14)
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Justifications for Linearization (3/5)
• Linearize the drift F around the mean at each time (cont’d).

F̃(X̃(t), t) = Θ(t)
(
[ek − p̄k]k + J(t)(X̃(t)− φ(t))

)
= Θ(t)

(
J(t)X(t) + [ek − p̄k + Jkφk(t)]k

)
.

(15)

DefineΨ : RKp → RKp : z 7→ [ek − σ(zk)]k and writeΨk : Rp → Rp to be the k-th component of
Ψ, expandΨ(z) around φ(t) for each t:

Ψ = Ψ(φ) + J(t)φ− J(φ)z+ o (‖z− φ‖) , (16)

or
Ψ(φ) + J(t)φ = Ψ(z) + J(φ)z+ o (‖z− φ‖) . (17)

This implies that

F̃ = Θ(t)J(t)X̃(t) + Θ(t)R(t), R(t; z) := Ψ(z) + J(t)z + o (∥z − φ(t)∥). (18)
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Justifications for Linearization (4/5)
• Point z for expansion.

– Around initialization: constant residue. Let z = u := c · [1K/K]Kk=1 be a scaling of vectors of ones where
c is some fixed constant. Then each of the K components of σ(u) assigns approximately the same
probability (1/K) for every label. Furthermore, u ∈ Ker J(t) for all t hence the residue
R(t; u) = Ψ(u) + o (∥z − φ(t)∥) is a constant vector.

– Around convergence: vanishing residue. Given that the model converges, φ∞ := φ(∞) is finite. Let
z = φ∞, under the effective training assumption, ∥Ψ(φ∞)∥ ≈ 0 by construction. Hence the residue
R(t;φ∞) = J(t)φ∞ + o (∥φ(t)− φ∞)∥). Here the o(·) term converges to 0 as training progresses,

leaving us a term that is asymptotically equivalent to v = (vk)Kk=1 := J(φ∞)φ∞ ∈ RK2 , where
vk = [(zk,i −

∑K
j=1 pk,jzk,j)pi]

K
i=1 ∈ RK ≈ 0K under the effective training assumption. In this regime, the

residue o (∥φ(t)− φ∞∥) eventually vanishes.
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Justifications for Linearization (5/5)
Summary of Approximations

• Decoupling inside an expectation.

• Linearize the drift around the mean X̄.

• First-order expansion around convergence.
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Setup

• Datasets and Models.

– GeoMNIST: K = 3 classes of simple geometric shapes (Rectangle, Ellipsoid, and Triangle).

– CIFAR-10: 5000 training samples and 1000 validation samples per class, with the total number of classes
K ∈ [2, 3].

• Training Configurations.

– Variants of the AlexNet model ([KSH12]): two convolutional layers and three fully-connected layers
activated by ReLU.

– All models are trained for T = 105 iterations (for GeoMNIST) or T = 3× 105 iterations (for CIFAR) with a
learning rate of 0.005 and a batch size of 1 under the softmax cross-entropy loss. Models on GeoMNIST
converged with training and validation losses to zero, and those on CIFAR to validation accuracies greater
than 90%.
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LE Coefficients Estimation
• Estimation Procedure. Define A(t) =

∫ t
0
α(τ)dτ , B(t) =

∫ t
0
β(τ)dτ , write out exact solutions

under the I-model and the L-model, we can estimate

(I-model)


Â(t) = avg avgk log

∣∣∣∣ X̌(̄Xk−X̌)K−1

c0cK−1
k

∣∣∣∣,
B̂(t) = − avg avgk log

∣∣∣ c0ck X̄k−X̌
X̌

∣∣∣, X̌t := avgl X̄
l
t,

(L-model)

{
Â(t) = A′(t) + 2B′(t),

B̂(t) = 2(B′(t) − A′(t)),

A′(t) := log
∣∣∣〈X̄⊤v1 − 1

〉∣∣∣ ,
B′(t) := log

∣∣∣〈X̄⊤ (
v2 − 4

3 v1
)〉∣∣∣ ,

(19)

where avgl(·) denotes averaging over axis l, and avg(·) averaging all elements.

• Main idea: eigenvectors of the Kp-by-Kp drift matrix M(t) as concatenations of K vectors inRp and
construct their linear combinations such that one or more independent components in the
solution vanishes.

• Obtain α̂(t) and β̂(t) using the Savitzky-Golay filter.

• Tail index rα := sups {s : limt→∞ α(t) · ts < ∞}, estimated by r̂α = 1 − avgT−1000≤t≤T
logα(t)
log(1+t) .
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LE Coefficient Estimation
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(c) CIFAR (I-model).
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Â
(t

),
B̂

(t
)
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Figure 2: Estimated Â(t), B̂(t),α(t), and β(t). The first row was estimated using I-model and the second L-model; the first two columns are
on GeoMNIST and the last two on CIFAR. The first and third rows show Â(t) and B̂(t) and the other two rows α̂(t) and β̂(t).
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Verifying the Separation Theorem
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(b) Validation accuracy.
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(c) I-model.
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Figure 3: Phase transition of separability over label pollution ratio perr . (a)—(b) Validation loss and accuracy suggest separation fails for
perr ≥ p∗err = 2/3. The dashed line in (a) carries the value at initialization and overlaps with the case where perr = 0.6; the dashed line in (b)
is p∗err = 2/3, when labels are assigned completely at random. (c)—(d) Tail indices ofα(t) and β(t) estimated using the I-model and L-model

resp. Although the case for the L-model does not exhibit a clear phase transition, we note around perr ≈ 2/3, the tail index of β̂(t) begins to
dominate that of α̂(t).
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Simulating Dynamics via LE­SDE
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(a) GeoMNIST (I-model).
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(b) GeoMNIST (L-model).
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(c) CIFAR (I-model).
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(d) CIFAR (L-model).

Figure 4: Simulated LE-ODE solutions versus genuine dynamics. We use α̂(t) and β̂(t) estimated from I-model ((a) and (c)) or L-model, ((b)
and (d)) and numerically simulate the solution under the L-model. The results were overlaid with true dynamics from neural nets. We note
L-model in general imitated true dynamics reasonably well.
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Residues of Simulating Dynamics via LE­SDE
We measure the goodness-of-fit via relative difference (RD, the lower the better) defined for each
class k ∈ [K] as

RDk(t) :=

∥∥X̄k(t) − Ȳk(t)
∥∥
Hk(∥∥X̄k(t)

∥∥
2
+

∥∥Ȳk(t)∥∥
2

)
/2

, (20)
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Figure 5: Relative difference RDk between genuine and simulated dynamics. Note that the L-model performs better than I-model
throughout training and better captures the later stages of the training (indicated by decreasing RD).
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Take­Home Messages
• A phenomenological approach: modeling feature dynamics via SDEs that encodes local elasticity.
LE-SDE/ODE can model feature dynamics reasonably well; but to close the gap, we may need to
go beyond linearity.

• LE is important for separation of features.

• The LE-SDE can be used to imitate the true dynamics once the LE strengths are estimated.



26

Future Works
• General LE Matrix. A similar result as in Theorem 1 may be expected for symmetric but no
necessarily semi-definite LE matrices E(t).

• Mini-batch Training, Imbalanced Datasets, and Label Corruptions. Generalizing the drift
matrix to Mt = (Et ⊗ P) ◦ H/K for a K-by-K doubly stochastic matrix P can be used to model
various sampling effects.

• Beyond L-model for Imitating Genuine Dynamics of DNNs. Although the L-model is shown to
be able to mimic the real dynamics reasonably well, we postulate that a more precise model
might have its (i, j)-th block encode the other directions other than dj.

• Finer-Grained Analysis and the Covariance Structure.

• Two-Stage Behavior and Exit-Time Analysis.
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