On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay

Ekaterina Lobacheva*

Maxim Kodryan*

Nadezhda Chirkova

Andrey Malinin

Dmitry Vetrov

samsung Research

The beginning of the story

- ResNet on a CIFAR-100
- Training using SGD with a fixed learning rate

We expect convergence

The beginning of the story

- ResNet on a CIFAR-100
- Training using SGD with a fixed learning rate

We expect convergence

Train loss

100

10-1

10-2

0 100 200 300
epoch

We get ... periodic behavior?

We investigate the periodic behaviour of neural networks during training

Goal 1. Find the reasons

Goal 1. Find the reasons - empirical and theoretical justification

BatchNorm + Weight Decay

Goal 1. Find the reasons - empirical and theoretical justification

instabilities in low weight norm region

BatchNorm + Weight Decay

Iow weight norm

Goal 1. Find the reasons - empirical and theoretical justification

Train loss

Weight norm

Goal 1. Find the reasons - empirical and theoretical justification

Train loss

Weight norm

Goal 1. Find the reasons - empirical and theoretical justification

Train loss

Weight norm

Goal 2. Empirical study:

How hyperparameters influence the behavior?

- Periodic behavior occurs for a wide range of learning rates and weight decays
- Higher learning rate or weight decay results in faster periods

Vary learning rate

Vary weight decay

Goal 2. Empirical study:

How different are the minima at different periods?

- Minima are functionally different
- Usually minima improve with each new period at the beginning of the training

Improvement of minima

Goal 2. Empirical study:

In what practical settings the periodic behavior may occur?

Settings:

- Standard networks
- SGD with momentum
- Data augmentation
- No learning rate schedule
- Long training

Practical training of ResNet-18 on CIFAR-100

Goal 2. Empirical study:

In what practical settings the periodic behavior may occur?

Settings:

- Standard networks
- SGD with momentum
- Data augmentation
- No learning rate schedule
- Long training

Practical training of ResNet-18 on CIFAR-100

BatchNorm + Weight Decay = ?

BatchNorm + Weight Decay = ?

Equilibrium

- Li et al., 2020. Reconciling modern deep learning with traditional optimization analyses: The intrinsic learning rate.
- Wan et al., 2020. Spherical motion dynamics: Learning dynamics of neural network with normalization, weight decay, and sgd.

BatchNorm + Weight Decay = ?

Equilibrium

- Li et al., 2020. Reconciling modern deep learning with traditional optimization analyses: The intrinsic learning rate.
- Wan et al., 2020. Spherical motion dynamics: Learning dynamics of neural network with normalization, weight decay, and sgd.

Instability

- Li and Arora, 2020. An exponential learning rate schedule for deep learning.
- Li et al, 2020. Understanding the disharmony between weight normal-ization family and weight decay.
- Li et al, 2020. Reconciling modern deep learning with traditional optimization analyses: The intrinsic learning rate.

BatchNorm + Weight Decay = ?

Equilibrium

- Li et al., 2020. Reconciling modern deep learning with traditional optimization analyses: The intrinsic learning rate.
- Wan et al., 2020. Spherical motion dynamics: Learning dynamics of neural network with normalization, weight decay, and sgd.

Instability

- Li and Arora, 2020. An exponential learning rate schedule for deep learning.
- Li et al, 2020. Understanding the disharmony between weight normal-ization family and weight decay.
- Li et al, 2020. Reconciling modern deep learning with traditional optimization analyses: The intrinsic learning rate.

Periodic behavior generalizes both views!

BatchNorm

+

Weight Decay

BatchNorm + Weight Decay

\$\stacksquare \text{Value} \tex

$$\mathcal{L}(\alpha w_t) = \mathcal{L}(w_t)$$

BatchNorm + Weight Decay

\$\sqrt{}
\$\text{scale invariant weights}

$$\mathcal{L}(\alpha w_t) = \mathcal{L}(w_t)$$

$$\mathcal{L}(\alpha w_t) = \mathcal{L}(w_t)$$

$$\mathcal{L}(\alpha w_t) = \mathcal{L}(w_t)$$

changes optimization properties: for lower weight norm steps are larger

$$\mathcal{L}(\alpha w_t) = \mathcal{L}(w_t)$$

$$\nabla \mathcal{L}(\alpha w_t) = \frac{\nabla \mathcal{L}(w_t)}{\alpha}$$

changes optimization properties: for lower weight norm steps are larger

optimization speed changes during training

$$\mathcal{L}(\alpha w_t) = \mathcal{L}(w_t)$$

$$\nabla \mathcal{L}(\alpha w_t) = \frac{\nabla \mathcal{L}(w_t)}{\alpha}$$

Gradient update of the weights:

$$w_{t+1} = w_t - \eta \nabla \mathcal{L}(w_t) - \eta \lambda w_t$$
 scale-invariant loss weight decay

Gradient update of the weights:

$$w_{t+1} = w_t - \eta \nabla \mathcal{L}(w_t) - \eta \lambda w_t$$
 scale-invariant loss weight decay

A: loss component is stronger

→ weight norm increase

Gradient update of the weights:

$$w_{t+1} = w_t - \eta \nabla \mathcal{L}(w_t) - \eta \lambda w_t$$
 scale-invariant loss weight decay

A: loss component is stronger

→ weight norm increase

B: weight decay component is stronger

weight norm decrease

Gradient update of the weights:

$$w_{t+1} = w_t - \eta \nabla \mathcal{L}(w_t) - \eta \lambda w_t$$
 scale-invariant loss weight decay

A: loss component is stronger

→ weight norm increase

B: weight decay component is stronger

weight norm decrease

C: low weight norm → divergence

Gradient update of the weights:

$$w_{t+1} = w_t - \eta \nabla \mathcal{L}(w_t) - \eta \lambda w_t$$
 scale-invariant loss weight decay

A: loss component is stronger

→ weight norm increase

B: weight decay component is stronger

weight norm decrease

One training period

C: low weight norm → divergence → high weight norm → new period

Empirical justification

We want to verify:

BatchNorm and Weight Decay influence on the weight norm causes periodic behavior

Experiment setting:

To prohibit this influence we fix the weight norm during training

Result:

No periodic behavior → the weight norm change is the key!

Train loss

Test error, %

Theoretical justification

Conditions for destabilization:

At what weight norm it is possible / guaranteed

Theoretical justification

Conditions for destabilization:

At what weight norm it is possible / guaranteed

Periods frequency dependency on the hyperparameters:

Periods frequency \preceq learning rate \times weight decay

Theoretical justification

Conditions for destabilization:

At what weight norm it is possible / guaranteed

Periods frequency dependency on the hyperparameters:

Periods frequency \propto learning rate \times weight decay

Generalization of the equilibrium:

Training dynamics converge to a stable periodic behavior

Empirical study

Architectures:

3-layer ConvNet, ResNet-18

Datasets:

CIFAR-10, CIFAR-100

Later on the slides:

ConvNet on CIFAR-10

Empirical study - hyperparameters

Simplified setting:

- Fully scale-invariant networks
- SGD
- No learning rate schedule
- No data augmentation

Vary learning rate

Vary weight decay

Empirical study - hyperparameters

Simplified setting:

- Fully scale-invariant networks
- SGD
- No learning rate schedule
- No data augmentation

Periods for a wide range of hyperparameters

Low values → too slow training

High values → unstable training

Vary learning rate

Vary weight decay

Empirical study - hyperparameters

Simplified setting:

- Fully scale-invariant networks
- SGD
- No learning rate schedule
- No data augmentation

Periods for a wide range of hyperparameters

Low values → too slow training

High values → unstable training

Empirical results agree with theoretical expectations:

Periods frequency \infty learning rate \times weight decay

Vary learning rate

Vary weight decay

one experiment

anchor checkpoint

subsequent checkpoints

independently trained network

independently trained network

At the beginning of training, minima usually improve with each new period:

Simplified setting:

- Fully scale-invariant networks
- SGD
- No data augmentation

Simplified setting:

- Fully scale-invariant networks
 Standard networks
- SGD
- No data augmentation

Simplified setting:

- Fully scale-invariant networks
- SGD SDG + momentum
- No data augmentation

Simplified setting:

- Fully scale-invariant networks
- SGD
- No data augmentation

With data augmentation

Practical setting:

- Standard networks
- SGD + momentum
- With data augmentation

Conclusion

Periodic training behavior

Reason: BatchNorm + Weight Decay

Empirical study:

- Influence of hyperparameters
- Minima diversity
- Practical setting

Paper: https://arxiv.org/abs/2106.15739

Code: https://github.com/tipt0p/periodic_behavior_bn_wd

