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Automated generation of 3D scene graphs is an important problem



Motivation

Given a scene graph with some node labels, 
how to predict the missing?
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A problem encountered in automatic 3D scene graph generation

Automated generation of 3D scene graphs is an important problem
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Semi-supervised Node Classification
Given a graph with some nodes labeled, how do 
we assign labels to other nodes??

?

?

? Well studied problem in social networks.
• Examples: document classification, webpage 

classification, user behavior on social networks …

• Datasets: Plantoid, OGB, ...

State-of-the-art approaches 
• Graph Neural Networks

Node classification on Pubmed (Plantoid)



Graph Neural Networks
Basic idea: Iteratively aggregate representation and feature vectors of neighbors

Read label after T iterations:



Graph Neural Networks
Basic idea: Iteratively aggregate representation and feature vectors of neighbors

Read label after T iterations:

Simple idea, but increasing concerns about limited expressive power
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Models for Scene Graphs
Probabilistic graphical models have been used to describe scene graphs

product of 
clique potentials

Example: Markov Random Field

Exact inference is NP-hard and exponential in graph treewidth
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• Experiments

Any (smooth) graph compatible function can be approximated by a Neural Tree 
with number of weights/parameters

num. nodes treewidth approx. 
distance



Contributions
• Graph compatible functions 

• Neural Tree architecture
 

• Approximation Results

• Experiments Scalable Neural Tree 
bounded treewidth subgraph sampling + Neural Tree

3D Scene Graphs
(smaller graphs with low treewidth)

Citation Networks 
(large treewidth graphs)



In the remaining time ...
• Graph compatible functions 

• Neural Tree architecture
 

• Approximation Results

• Experiments
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Relevance: Approximating Inference
Graph compatible functions arise naturally in probabilistic graphical 
models

Implication: 

(see Appendix A in the paper).

prob. distribution 
over graph

clique potential graph compatible 
function

Approximating graph 
compatible functions 

Approximating exact inference on 
probabilistic graphical models 
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Relevance: Approx. Invariant/Equivariant 
Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant 
functions.

Invariant function

Theorem: 

for all node permutations

For every invariant function       and an 
there exists       graph compatible functions
such that

some non-linear function

Similar result holds for 
equivariant functions
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Neural Tree Architecture
An architecture to approximate any (smooth) graph compatible function

Basic Idea 

1. Convert graph to a tree, called H-tree
2. Neural Tree arch. = Message passing on the H-tree

The H-tree is constructed by successive tree decomposition

H-tree
leaf node = node (input graph)

non-leaf nodes = group of nodes (input graph)



Recall: Tree Decomposition
Tree decomposition is a tree structured graph such that
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graph corresponds to a group of 
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Recall: Tree Decomposition
Tree decomposition is a tree structured graph such that

A well studied structure in graph optimization, combinatorial optimization, and 
probabilistic graphical models.

Junction Tree Algorithm: 
• Message passing on tree decomposition of input graph
• Algorithm for exact inference

e g

fa

cb

d

egf

aef

acf

abc cd

Graph

Tree decomposition

each node (bag) in the tree 
graph corresponds to a group of 
nodes in the input graph
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H-tree Construction
Successive tree decomposition

Step 2: Get subgraph corresponding to each bag
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H-tree Construction
Successive tree decomposition

Step 3: Tree decomposition of sub-graphs
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H-tree Construction
Successive tree decomposition

Iterate till all the sub-graphs are complete graphs
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H-tree for a 
complete graph 
= star graph
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H-tree Construction
Successive tree decomposition Finally, Connect all H-trees of sub-graphs to the 

tree-decomposition of the input graph
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Neural Tree Architecture
1. Convert graph to a tree, called H-tree

2. Neural Tree arch. = Message passing on the H-tree

H-tree

non-leaf nodes = set of nodes (input graph)

leaf node = node (input graph)

successive Tree Decomposition

Neighbors of u in H-treeAggregation function

if u is a leaf node

otherwise
with



Approximation Results
Theorem: For any (smooth) graph compatible function         

and an            , there exists a Neural Tree model             with       weights/parameters such that

a.
 

b.
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Approximation Results
Theorem: For any (smooth) graph compatible function         

and an            , there exists a Neural Tree model             with       weights/parameters such that

a.
 

b.

  

 

1-Lipschitz 
continuous

num. nodes in
the graph

treewidth of the 
tree-decomposition used



Remarks
• Parameter complexity of Neural Tree

• Linearly in graph size
• Exponentially in graph treewidth 

• Complexity of exact inference on 
graphical models 
• NP-hard
• Exponential in graph treewidth



Experiments

3D Scene Graphs
(smaller graphs with low treewidth)

• 3D Scene Graphs 

• Citation Networks 

Citation Networks 
(large treewidth graphs)



3D Scene Graphs
Stanford 3D Scene Graph dataset
• 482 rooms with 15 categories
• 2338 objects with 35 categories
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3D Scene Graphs
Stanford 3D Scene Graph dataset
• 482 rooms with 15 categories
• 2338 objects with 35 categories

We construct 3D Scene Graph by
• Connecting nearby objects

Input feature for each node
• centroid and bounding box 

dimension



Neural Tree vs traditional GNN
Compare Neural Tree message passing with GNN message passing, with same 
aggregation function

Experiments and Results

Test Accuracy*
● Neural Tree always performs 

better than traditional GNN

● Always better to do message 
passing on H-tree

*Random train/val/test (70/10/20) split



Increased training data
• Sharper increase with increasing training 

data for Neural Trees
• Performance of traditional GNN caps out

Experiments and Results



Increased training data
• Sharper increase with increasing training 

data for Neural Trees
• Performance of traditional GNN caps out

Experiments and Results

Number of message passing iterations
• Max attained at roughly the ave. diameter 

of the H-tree
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Does Neural Tree scale?
Bounded treewidth subgraph 
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Does Neural Tree scale?
Bounded treewidth subgraph 
sampling + Neural Tree

Citation Networks

● Neural Tree attains the same 
performance as GNN, even for 
small treewidth bound

● Neural Tree is data hungry. 
Does not perform well with 
less training data.

Tree width bounds k = 1 and 4
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• Graph compatible functions 

• Neural Tree architecture
 

• Approximation Results

• Scalable Neural Tree

Conclusion
Invariant/equivariant 
function approximation

Graph Compatible 
functions

Graph treewidth

Result may be repurposed to other GNNs that extract hierarchical features
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• Graph compatible functions 

• Neural Tree architecture
 

• Approximation Results

• Scalable Neural Tree

Conclusion

Neural Tree is a general architecture

Remains to be applied to graph 
classification, link prediction, etc.
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