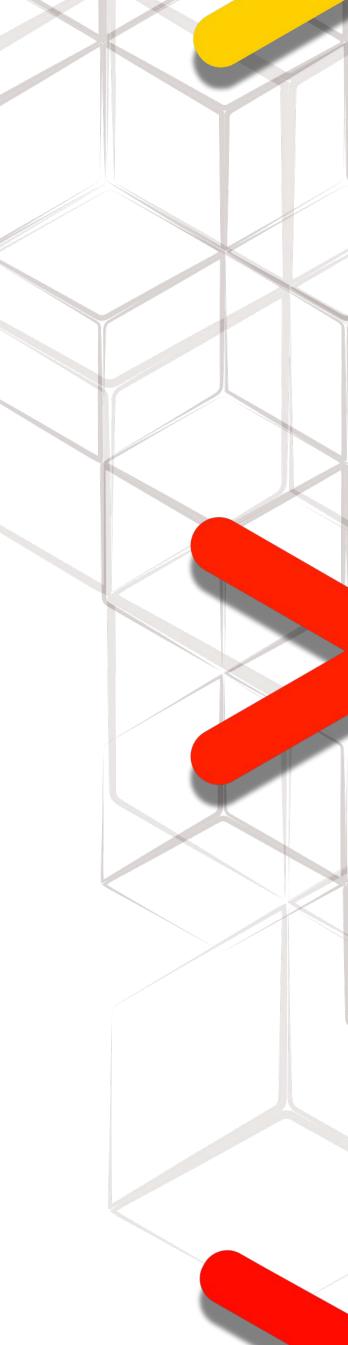


Rajat Talak, Siyi Hu, Lisa Peng, and Luca Carlone

Massachusetts Institute of Technology

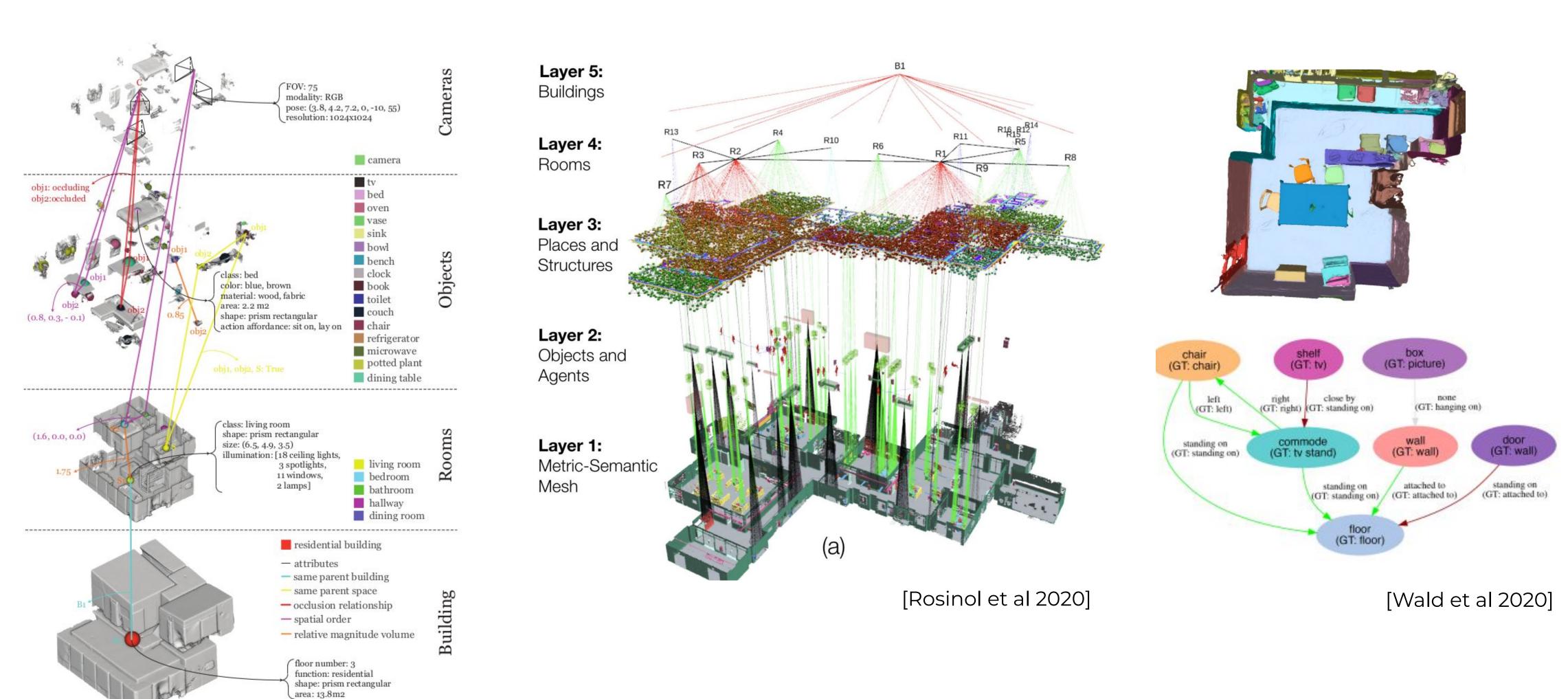
NeurIPS 2021



Motivation

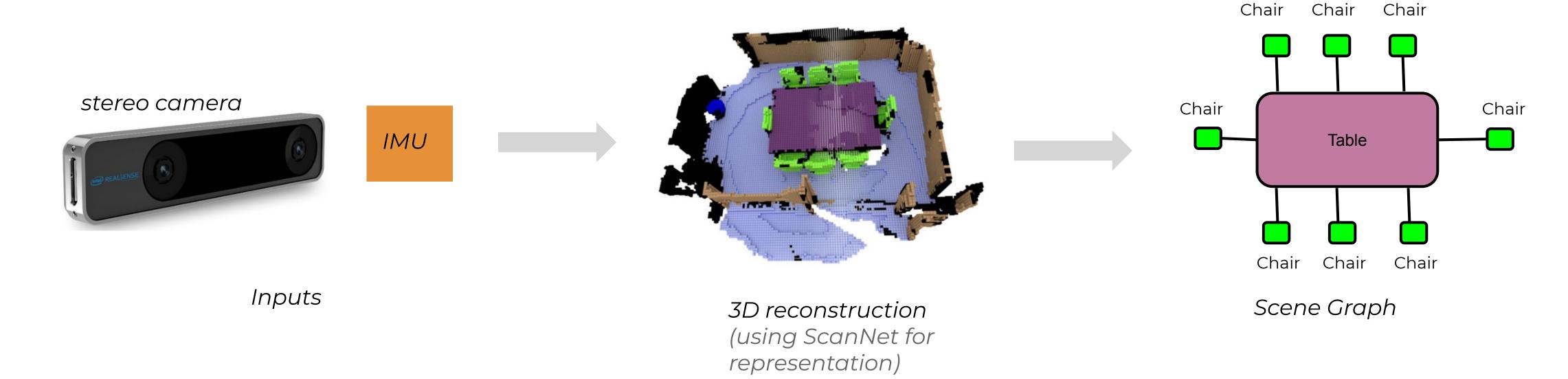
Automated generation of 3D scene graphs is an important problem

[Armeni et al 2019]

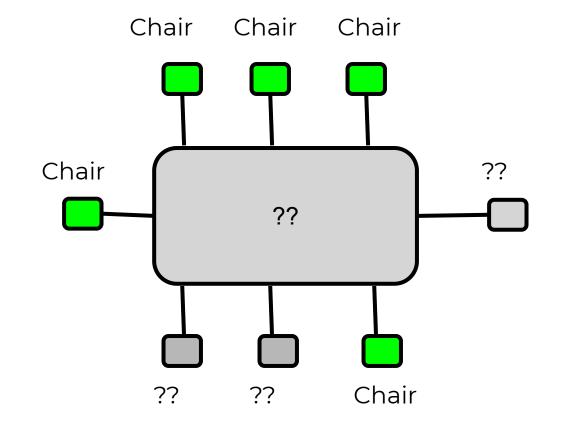


Motivation

Automated generation of 3D scene graphs is an important problem

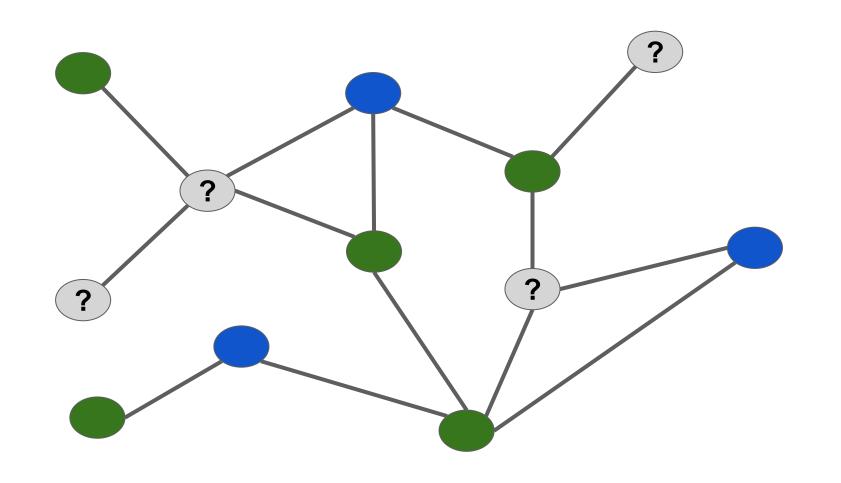


A problem encountered in *automatic* 3D scene graph generation



Given a scene graph with some node labels, how to predict the missing?

Semi-supervised Node Classification



Given a graph with some nodes labeled, how do we assign labels to other nodes?

Semi-supervised Node Classification

Plantoid

Zhilin Yang William W. Cohen Ruslan Salakhutdinov			ZHILINY@CS.0 WCOHEN@CS.0	
chool of Computer Science, Carneg	DATASET	#CLASSES	#NODES	#EDGES
Abstract	CITESEER	6	3,327	4,732
We present a semi-supervised	CORA	7	2,708	5,429
work based on graph embedding	PUBMED	3	19,717	44,338
between instances, we train an each instance to jointly predict the	DIEL	4	4,373,008	4,464,261
the neighborhood context in the	NELL	210	65,755	266,144

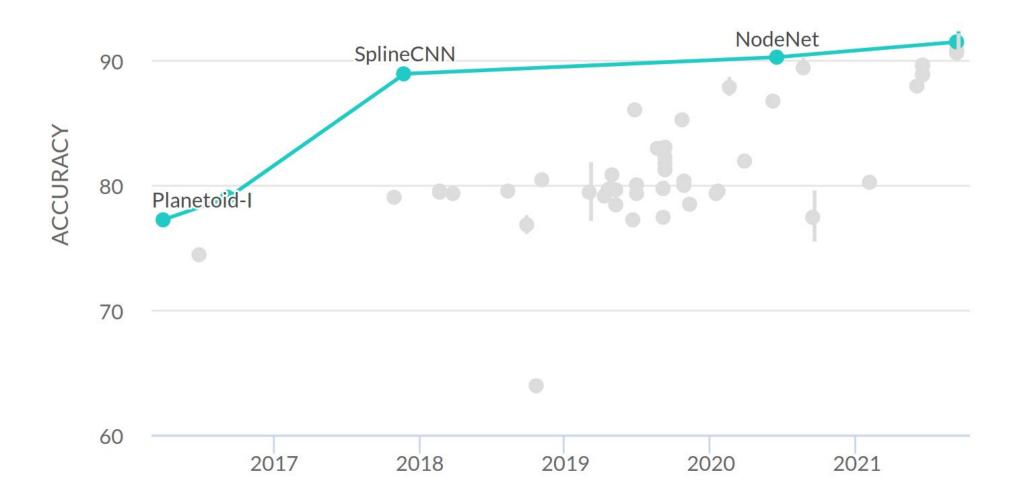
Given a graph with some nodes labeled, how do we assign labels to other nodes?

Well studied problem in social networks.

- Examples: document classification, webpage classification, user behavior on social networks ...
- Datasets: Plantoid, OGB, ...

Semi-supervised Node Classification

Node classification on Pubmed (Plantoid)



Leaderboard for ogbn-papers100M

The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.2.0

Rank	Method	Test Accuracy	Validation Accuracy	Contact	References	#Params	Hardware	Date
1	SAGN+SLE (4 stages)	0.6830 ±	0.7163 ± 0.0007	Chuxiong Sun (CTRI)	Paper,	8,556,888	Tesla V100 (16GB	Sep 21,
		0.0008			Code		GPU)	2021
2	GAMLP+RLU	0.6825 ±	0.7159 ± 0.0005	Wentao Zhang (PKU Tencent	Paper,	16,308,751	Tesla V100 (32GB)	Aug 19,
		0.0011		Joint Lab)	Code			2021
3	FSGNN	0.6807 ±	0.7175 ± 0.0007	Sunil Kumar Maurya	Paper,	16,453,301	NVIDIA V100 (16GB)	Sep 16,
		0.0006		(TokyoTech, AIST)	Code			2021
4	SAGN+SLE	0.6800 ±	0.7131 ± 0.0010	Chuxiong Sun	Paper,	8,556,888	Tesla V100 (16GB	Apr 19,
		0.0015			Code		GPU)	2021
5	GAMLP	0.6771 ±	0.7117 ± 0.0014	Wentao Zhang (PKU Tencent	Paper,	16,308,751	Tesla V100 (32GB)	Aug 22,
		0.0020		Joint Lab)	Code			2021
6	TransformerConv	0.6736 ±	0.7172 ± 0.0005	Xiaonan Song (NVIDIA SAE	Paper.	883,378	NVIDIA DGX-2	Mar 4.

Given a graph with some nodes labeled, how do we assign labels to other nodes?

Well studied problem in social networks.

- Examples: document classification, webpage classification, user behavior on social networks ...
- Datasets: Plantoid, OGB, ...

State-of-the-art approaches

Graph Neural Networks

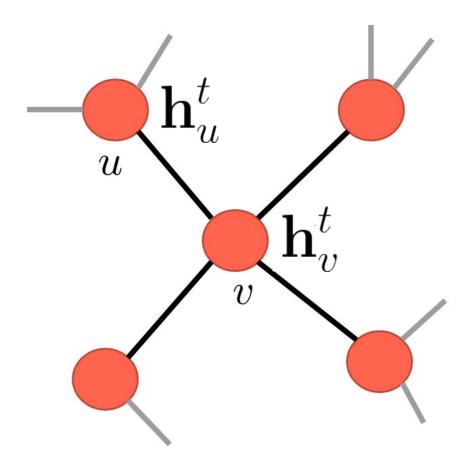
Graph Neural Networks

Basic idea: Iteratively aggregate representation and feature vectors of neighbors

$$\mathbf{h}_{v}^{t} = AGG_{t}\left(\mathbf{h}_{v}^{t-1}, \left\{\left(\mathbf{h}_{u}^{t-1}, \kappa_{u,v}, \mathbf{h}_{v}^{t-1}\right) \mid w \in \mathcal{N}_{\mathcal{G}}(v)\right\}\right)$$

Read label after T iterations:

$$y_v = \text{READ}(\mathbf{h}_v^T)$$



illustration

$$\mathbf{h}_v^0 = \mathbf{x}_v$$

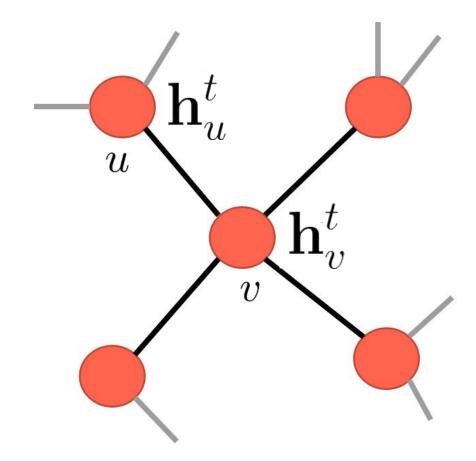
Graph Neural Networks

Basic idea: Iteratively aggregate representation and feature vectors of neighbors

$$\mathbf{h}_{v}^{t} = \mathrm{AGG}_{t}\left(\mathbf{h}_{v}^{t-1}, \left\{\left(\mathbf{h}_{u}^{t-1}, \kappa_{u, v}, \mathbf{h}_{v}^{t-1}\right) \mid w \in \mathcal{N}_{\mathcal{G}}(v)\right\}\right)$$

Read label after T iterations:

$$y_v = \text{READ}(\mathbf{h}_v^T)$$



illustration

$$\mathbf{h}_v^0 = \mathbf{x}_v$$

Simple idea, but increasing concerns about limited expressive power

Expressivity Bottlenecks of GNNs

Approximate any graph invariant/equivariant function is an open challenge

Invariance: output invariant to node permutation. eg. graph classification

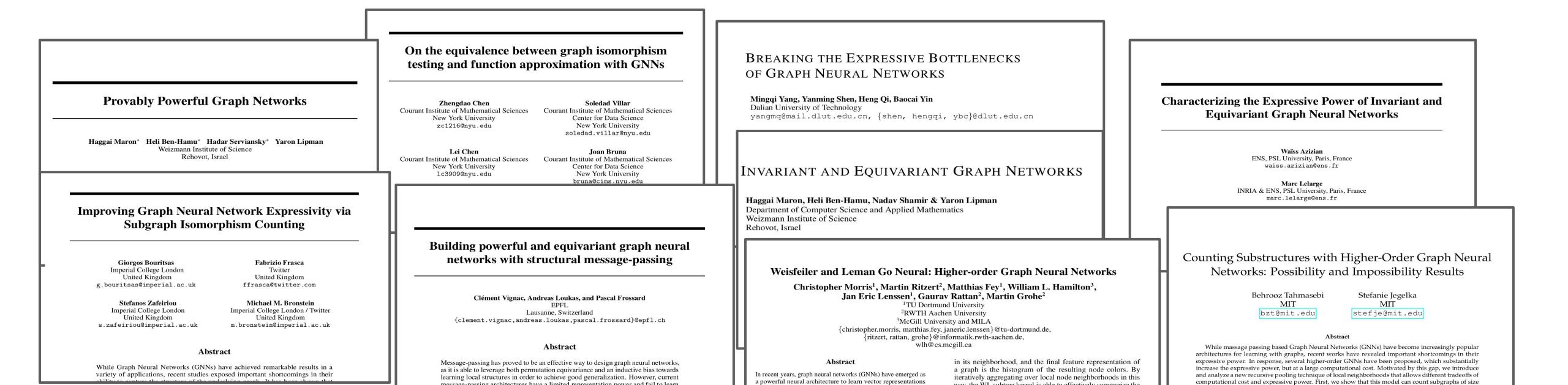
Equivariance: output commutes with node permutation. eg. node classification

Expressivity Bottlenecks of GNNs

Approximate any graph invariant/equivariant function is an open challenge

Invariance: output invariant to node permutation. eg. graph classification

Equivariance: output commutes with node permutation. eg. node classification



Probabilistic graphical models have been used to describe scene graphs

$$p(\mathbf{X}|\mathcal{G}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{x}_{C})$$

2020

Generative Modeling of Environments with Scene Grammars and Variational Inference

Gregory Izatt and Russ Tedrake {gizatt, russt}@csail.mit.edu

Abstract—How do we verify that a cleaning robot that we have tested only in a simulator and in case studies in the lab, will work in every house in the world? A critical step in answering that question is to establish a quantitative understanding of

2018

Human-centric Indoor Scene Synthesis Using Stochastic Grammar

Siyuan Qi¹ Yixin Zhu¹ Siyuan Huang¹ Chenfanfu Jiang² Song-Chun Zhu¹

¹ UCLA Center for Vision, Cognition, Learning and Autonomy

² UPenn Computer Graphics Group

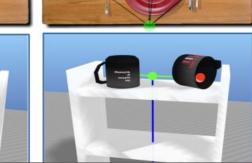
btain -pixel

AOG)

is a nodes orted

scene

arkov



Abstract

2014

Creating Consistent Scene Graphs Using a Probabilistic Grammar

Tianqiang Liu¹ Siddhartha Chaudhuri^{1,2} Vladimir G. Kim³ Qixing Huang^{3,4} Niloy J. Mitra⁵ Thomas Funkhouser¹

¹Princeton University ²Cornell University ³Stanford University ⁴Toyota Technological Institute at Chicago ⁵University College London

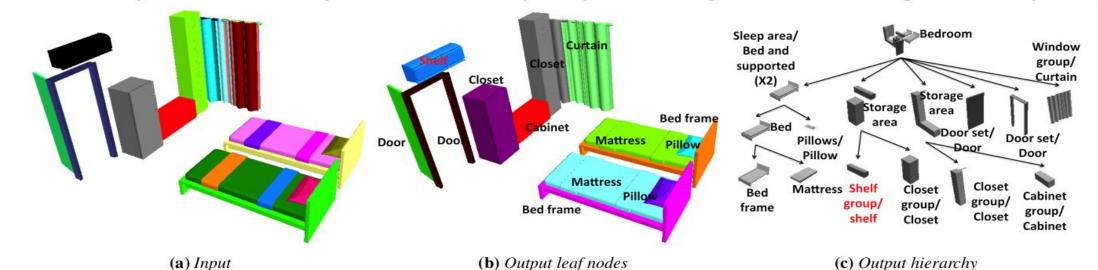


Figure 1: Our algorithm processes raw scene graphs with possible over-segmentation (a), obtained from repositories such as the Trimble Warehouse, into consistent hierarchies capturing semantic and functional groups (b,c). The hierarchies are inferred by parsing the scene

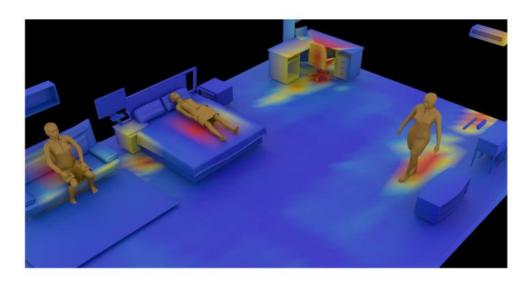
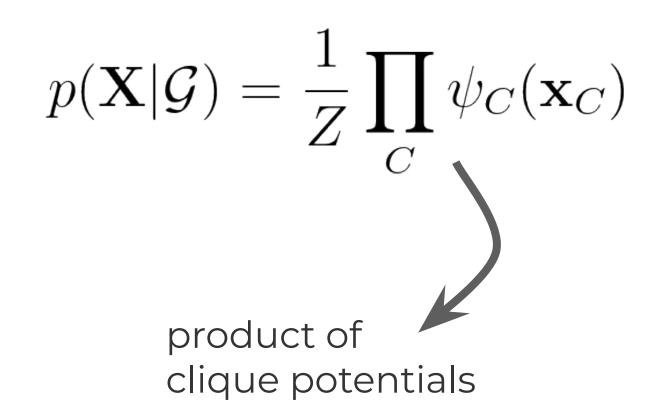


Figure 1: An example of synthesized indoor scene (bedroom) with affordance heatmap. The joint sampling of a

Probabilistic graphical models have been used to describe scene graphs



Generative Modeling of Environments with Scene Grammars and Variational Inference

Gregory Izatt and Russ Tedrake {gizatt, russt}@csail.mit.edu

Abstract—How do we verify that a cleaning robot that we have tested only in a simulator and in case studies in the lab, will work in every house in the world? A critical step in answering that question is to establish a quantitative understanding of

2020

2018

Human-centric Indoor Scene Synthesis Using Stochastic Grammar

Siyuan Qi¹ Yixin Zhu¹ Siyuan Huang¹ Chenfanfu Jiang² Song-Chun Zhu¹

¹ UCLA Center for Vision, Cognition, Learning and Autonomy

² UPenn Computer Graphics Group

Abstract

2014 Creating Consistent Scene Graphs Using a Probabilistic Grammar btain -pixel Tianqiang Liu¹ Siddhartha Chaudhuri^{1,2} Vladimir G. Kim³ Qixing Huang^{3,4} Niloy J. Mitra⁵ Thomas Funkhouser¹ AOG)¹Princeton University ²Cornell University ³Stanford University ⁴Toyota Technological Institute at Chicago ⁵University College London is a nodes orted scene arkov **(b)** Output leaf nodes (a) Input (c) Output hierarchy **Figure 1:** Our algorithm processes raw scene graphs with possible over-segmentation (a), obtained from repositories such as the Trimble

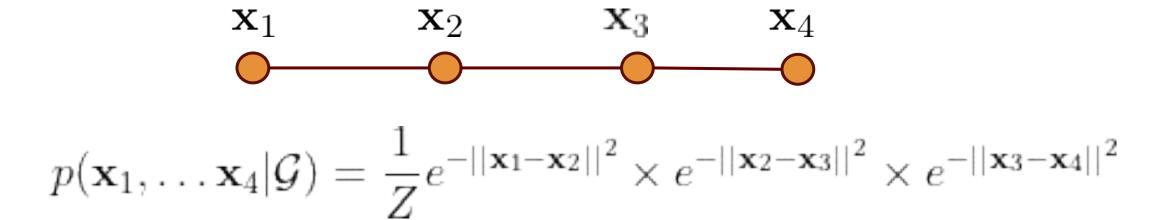
Warehouse, into consistent hierarchies capturing semantic and functional groups (b,c). The hierarchies are inferred by parsing the scene

Figure 1: An example of synthesized indoor scene (bedroom) with affordance heatmap. The joint sampling of a

Probabilistic graphical models have been used to describe scene graphs

$$p(\mathbf{X}|\mathcal{G}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$
 product of clique potentials

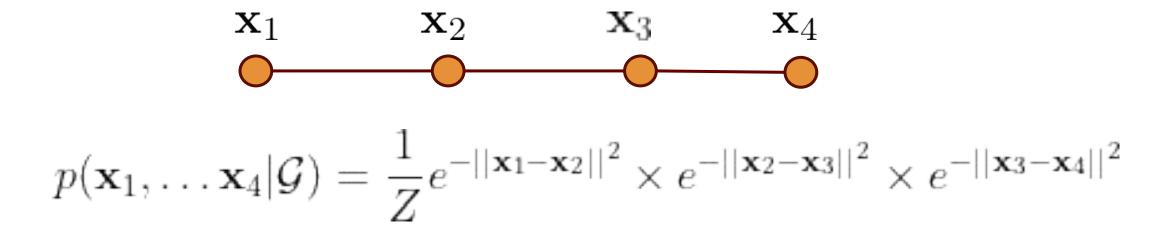
Example: Markov Random Field



Probabilistic graphical models have been used to describe scene graphs

$$p(\mathbf{X}|\mathcal{G}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$
 product of clique potentials

Example: Markov Random Field



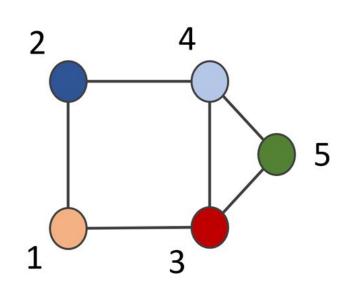
Exact inference is NP-hard and exponential in graph treewidth

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Experiments

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Experiments

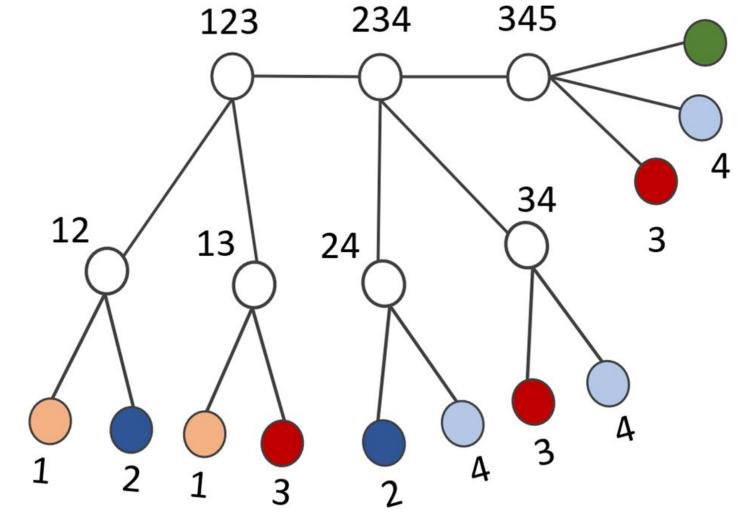
Exact inference on prob. graphical model equivalent Graph compatible functions approximated w. finitely many Graph invariant/equivariant functions

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Experiments



Input graph with node attributes (colors)

Generate a tree structured graph called *H-tree*



Generated tree structured graph

Neural Tree is message passing on H-tree

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Experiments

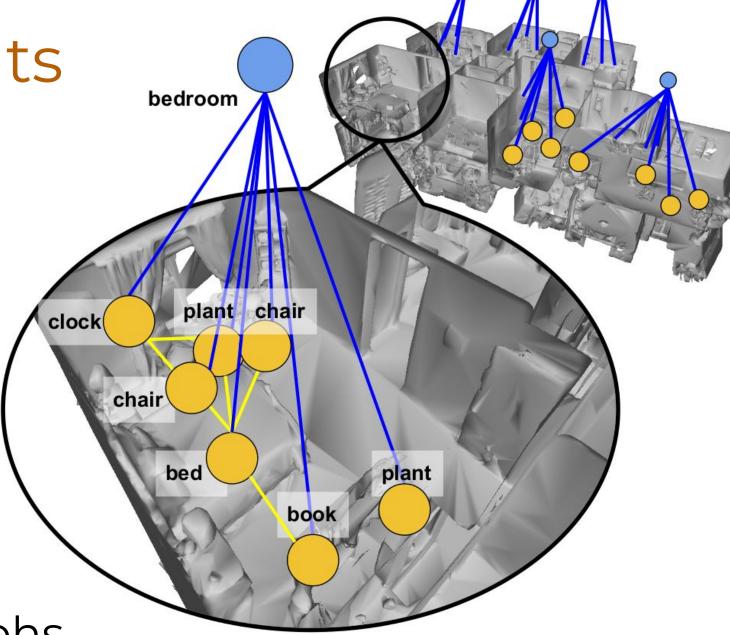
Any (smooth) graph compatible function can be approximated by a Neural Tree with number of weights/parameters

$$N = \mathcal{O}\left(n \cdot (\operatorname{tw}(G)/\epsilon)^{c \cdot \operatorname{tw}(G)}\right)$$
 num. nodes treewidth approx. distance

- Graph compatible functions
- Neural Tree architecture

Approximation Results

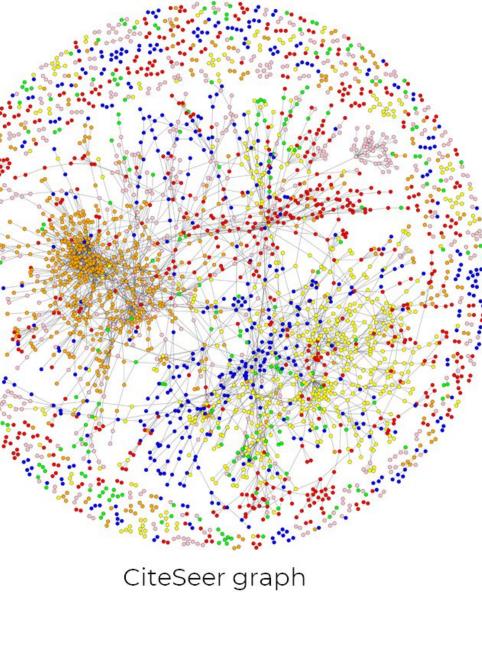
Experiments



3D Scene Graphs (smaller graphs with low treewidth)

Citation Networks (large treewidth graphs)

	PubMed	CiteSeer	Cora
Nodes	19,717	3,327	2,708
Edges	44,338	4,732	5,429
Classes	3	6	7



Scalable Neural Tree

bounded treewidth subgraph sampling + Neural Tree

Technical Presentation

WSDM '20, February 3-7, 2020, Houston, TX, USA

Sampling Subgraphs with Guaranteed Treewidth for Accurate and Efficient Graphical Inference

Jaemin Yoo Seoul National University Seoul, Republic of Korea jaeminyoo@snu.ac.kr

Seoul National University Seoul, Republic of Korea ukang@snu.ac.kr Mauro Scanagatta Fondazione Bruno Kessler Trento, Italy mscanagatta@fbk.eu

Giorgio Corani IDSIA Lugano, Switzerland giorgio@idsia.ch Marco Zaffalon IDSIA Lugano, Switzerland zaffalon@idsia.ch

ABSTRACT

How can we run graphical inference on large graphs efficiently and

JT

JT

In the remaining time ...

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Experiments

A function on input node features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$$

is said to be graph compatible w.r.t. graph ${\cal G}$ if it can be written as

function over node

features in the clique

$$f(\mathbf{X}) = \sum_{C} \theta_C(\mathbf{x}_C)$$
 sum over all cliques in the graph

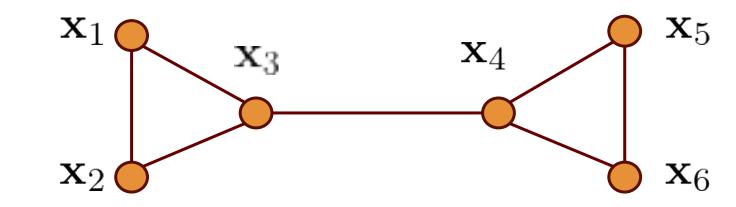
A function on input node features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$$

is said to be graph compatible w.r.t. graph ${\cal G}$ if it can be written as

$$f(\mathbf{X}) = \sum_{C} \theta_C(\mathbf{x}_C)$$
 sum over all cliques in the graph

function over node features in the clique



$$f(\mathbf{x}_1, \dots \mathbf{x}_6) = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_3 \mathbf{x}_4 + \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_6$$

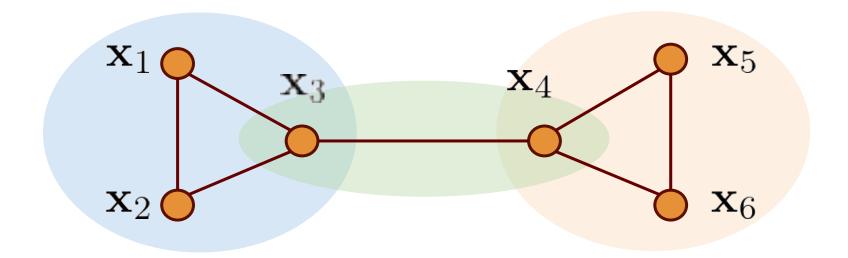
A function on input node features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$$

is said to be graph compatible w.r.t. graph ${\cal G}$ if it can be written as

$$f(\mathbf{X}) = \sum_{C} \theta_C(\mathbf{x}_C)$$
 sum over all cliques in the graph

function over node features in the clique



$$f(\mathbf{x}_1, \dots \mathbf{x}_6) = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_3 \mathbf{x}_4 + \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_6$$

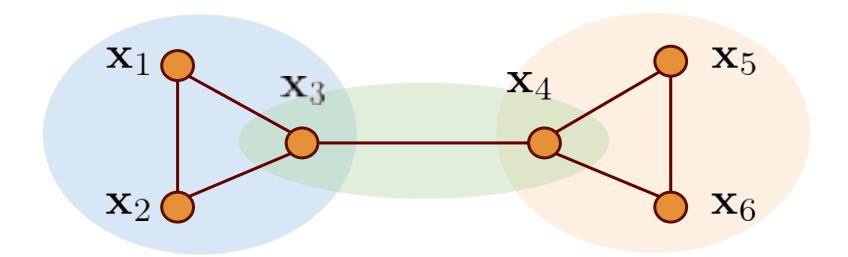
A function on input node features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$$

is said to be graph compatible w.r.t. graph ${\cal G}$ if it can be written as

$$f(\mathbf{X}) = \sum_{C} \theta_C(\mathbf{x}_C)$$
 sum over all cliques in the graph

function over node features in the clique



$$f(\mathbf{x}_1, \dots \mathbf{x}_6) = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_3 \mathbf{x}_4 + \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_6$$

$$f(\mathbf{x}_1, \dots \mathbf{x}_4) = ||\mathbf{x}_1 - \mathbf{x}_2|| + ||\mathbf{x}_2 - \mathbf{x}_3|| + ||\mathbf{x}_3 - \mathbf{x}_4||$$

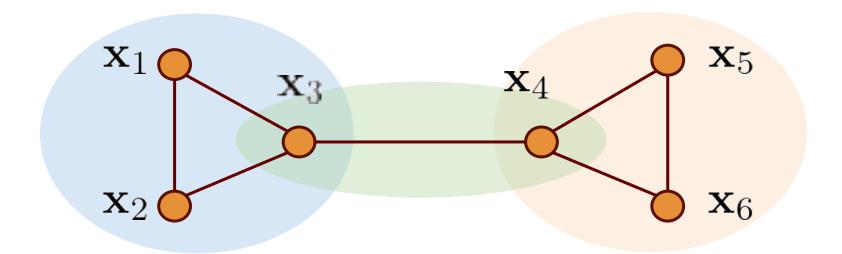
A function on input node features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n)$$

is said to be graph compatible w.r.t. graph ${\cal G}$ if it can be written as

$$f(\mathbf{X}) = \sum_{C} \theta_C(\mathbf{x}_C)$$
 sum over all cliques in the graph

function over node features in the clique



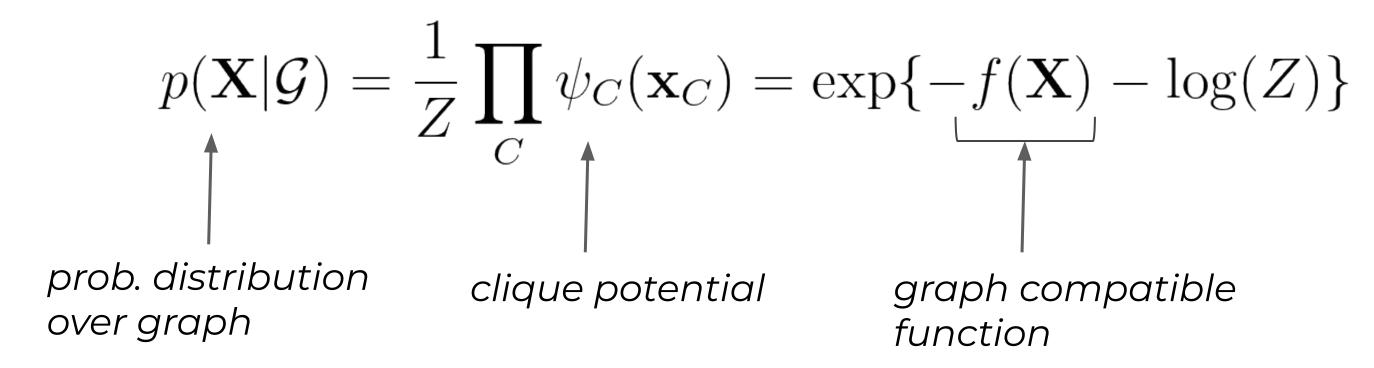
$$f(\mathbf{x}_1, \dots \mathbf{x}_6) = \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_3 \mathbf{x}_4 + \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_6$$



$$f(\mathbf{x}_1, \dots \mathbf{x}_4) = ||\mathbf{x}_1 - \mathbf{x}_2|| + ||\mathbf{x}_2 - \mathbf{x}_3|| + ||\mathbf{x}_3 - \mathbf{x}_4||$$

Relevance: Graphical Models

Graph compatible functions arise naturally in probabilistic graphical models



Relevance: Graphical Models

Graph compatible functions arise naturally in probabilistic graphical models

$$p(\mathbf{X}|\mathcal{G}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C) = \exp\{-f(\mathbf{X}) - \log(Z)\}$$
 prob. distribution over graph clique potential graph compatible function

Example: Markov Random Field

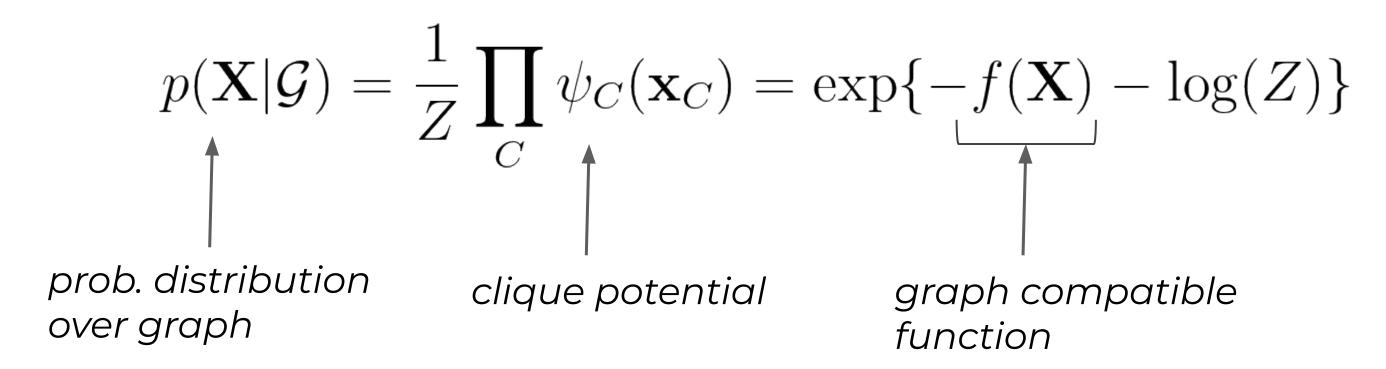
$$p(\mathbf{x}_1, \dots \mathbf{x}_4 | \mathcal{G}) = \frac{1}{Z} e^{-||\mathbf{x}_1 - \mathbf{x}_2||} \times e^{-||\mathbf{x}_2 - \mathbf{x}_3||} \times e^{-||\mathbf{x}_3 - \mathbf{x}_4||}$$
$$= \exp\{-f(\mathbf{X}) - \log(Z)\}$$

$$\mathbf{x}_1$$
 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4

$$f(\mathbf{x}_1, \dots \mathbf{x}_4) = ||\mathbf{x}_1 - \mathbf{x}_2|| + ||\mathbf{x}_2 - \mathbf{x}_3|| + ||\mathbf{x}_3 - \mathbf{x}_4||$$

Relevance: Approximating Inference

Graph compatible functions arise naturally in probabilistic graphical models



Implication:

Approximating graph compatible functions

Approximating exact inference on probabilistic graphical models

(see Appendix A in the paper).

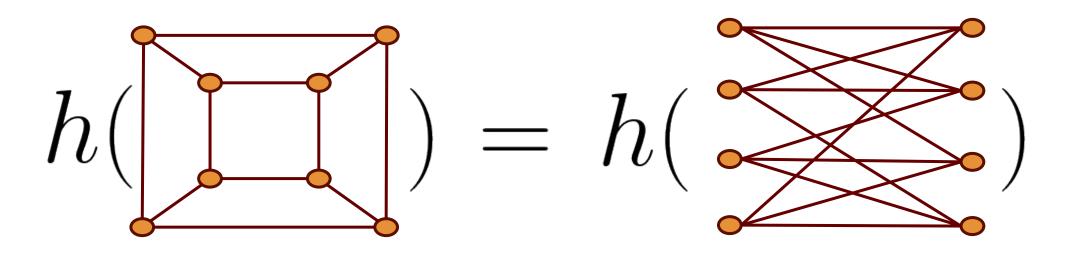
Relevance: Approx. Invariant/Equivariant Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant functions.

Invariant function

$$h(\mathbf{X}^{\sigma}, \mathcal{G}^{\sigma}) = h(\mathbf{X}, \mathcal{G})$$

for all node permutations σ



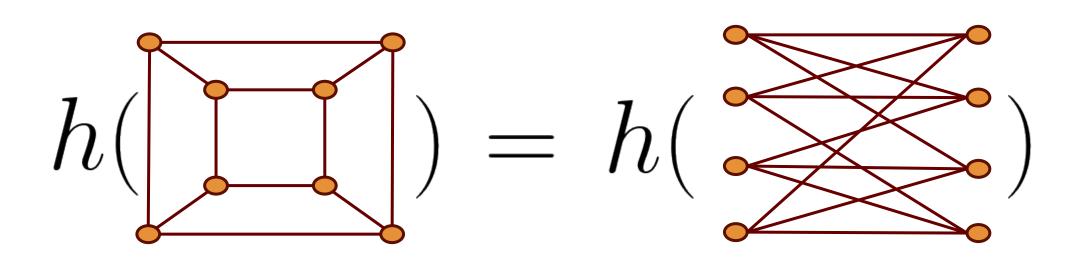
Relevance: Approx. Invariant/Equivariant Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant functions.

Invariant function

$$h(\mathbf{X}^{\sigma}, \mathcal{G}^{\sigma}) = h(\mathbf{X}, \mathcal{G})$$

for all node permutations σ



Theorem:

For every invariant function $\,h\,$ and an $\epsilon>0\,$ there exists M graph compatible functions f^i such that

$$\sup_{\mathbf{X} \in \mathbb{X}} \left| h(\mathbf{X}) - \sum_{i=1}^{M} \phi\left(f^i(\mathbf{X})\right) \right| < \epsilon$$

$$\Longrightarrow \text{ some non-linear function } \phi: \mathbb{R} \to \mathbb{R}$$

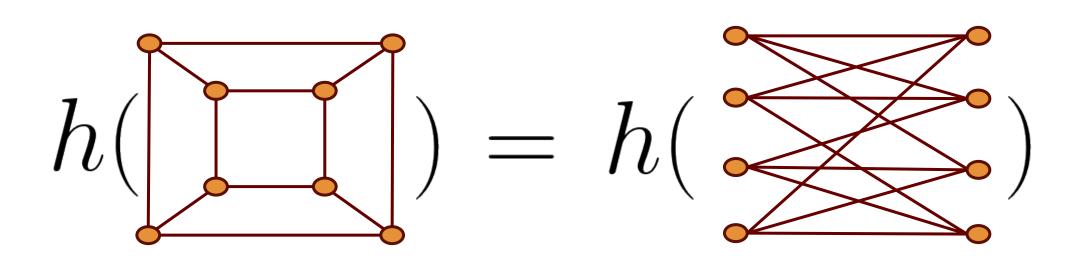
Relevance: Approx. Invariant/Equivariant Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant functions.

Invariant function

$$h(\mathbf{X}^{\sigma}, \mathcal{G}^{\sigma}) = h(\mathbf{X}, \mathcal{G})$$

for all node permutations σ



Theorem:

For every invariant function $\,h\,$ and an $\epsilon>0\,$ there exists M graph compatible functions f^i such that

Similar result holds for equivariant functions

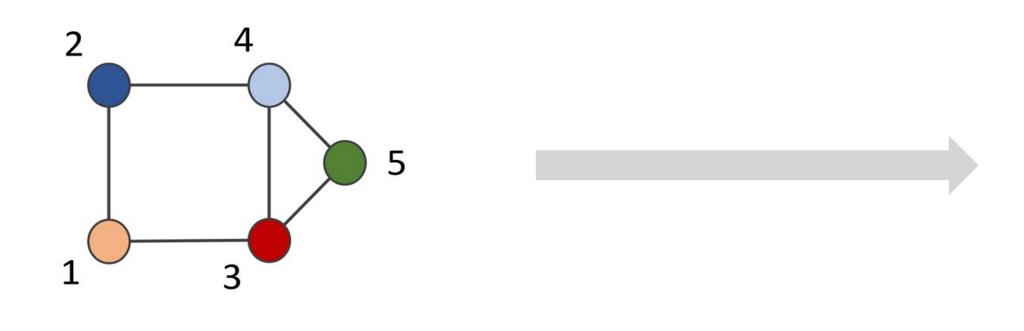
$$\sup_{\mathbf{X} \in \mathbb{X}} \ \left| h(\mathbf{X}) - \sum_{i=1}^{M} \phi\left(f^i(\mathbf{X})\right) \right| < \epsilon$$
 some non-linear function $\phi : \mathbb{R} \to \mathbb{R}$

Neural Tree Architecture

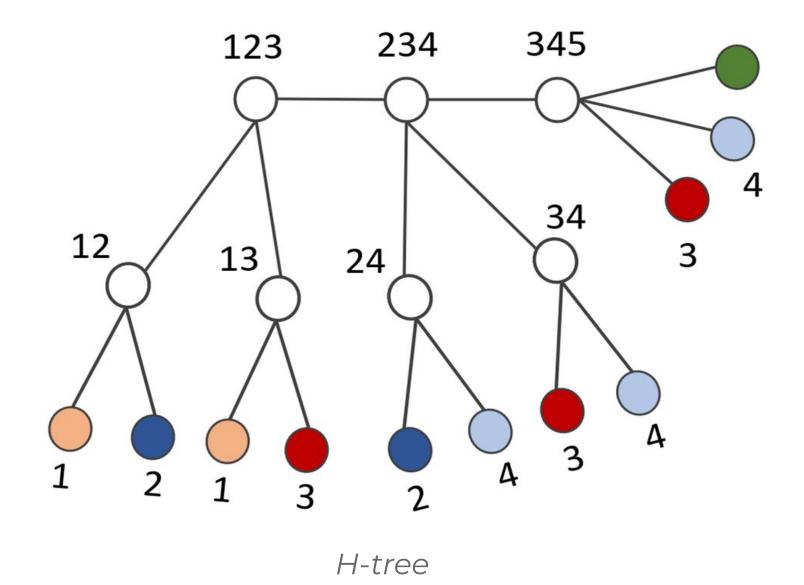
An architecture to approximate any (smooth) graph compatible function

Basic Idea

- 1. Convert graph to a tree, called H-tree
- 2. Neural Tree arch. = Message passing on the H-tree



Input graph with node attributes (colors)



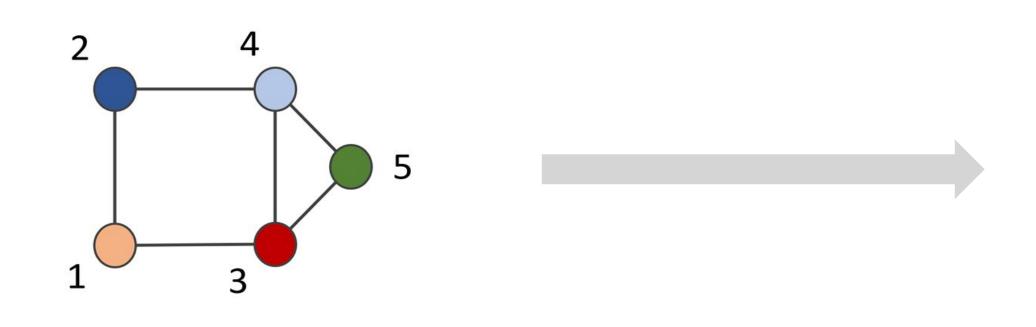
Neural Tree Architecture

An architecture to approximate any (smooth) graph compatible function

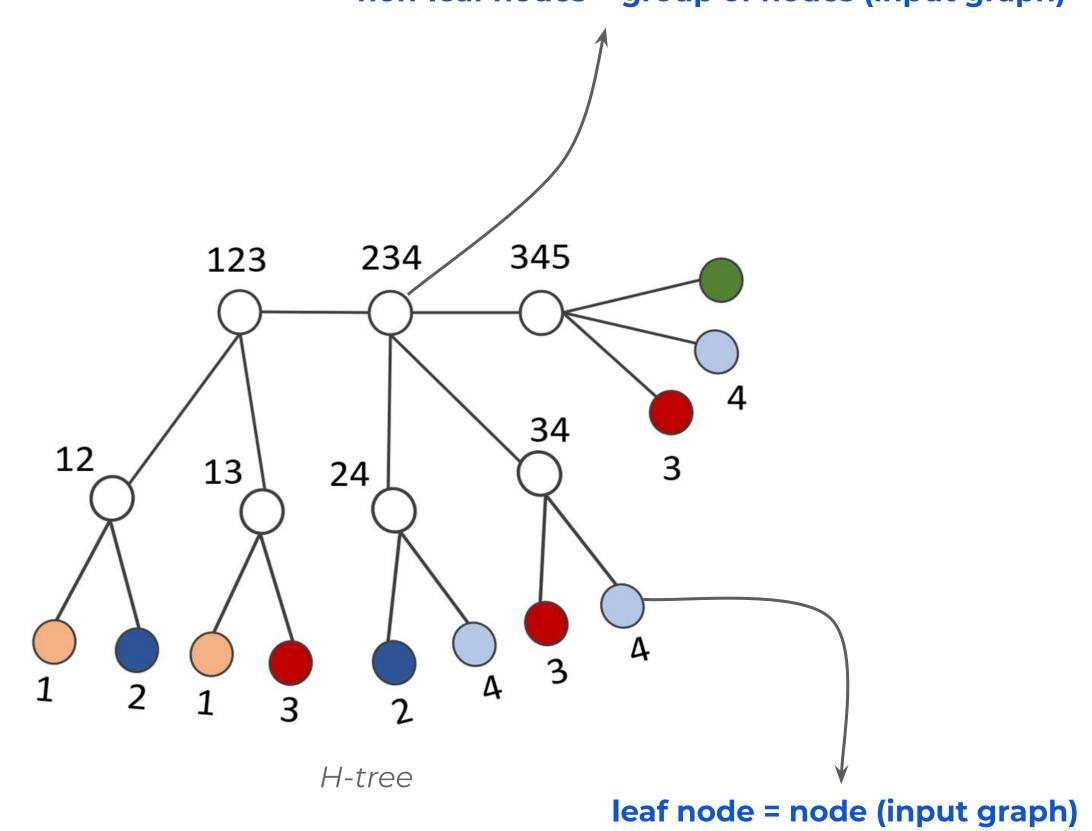
non-leaf nodes = group of nodes (input graph)

Basic Idea

- 1. Convert graph to a tree, called H-tree
- 2. Neural Tree arch. = Message passing on the H-tree



Input graph with node attributes (colors)



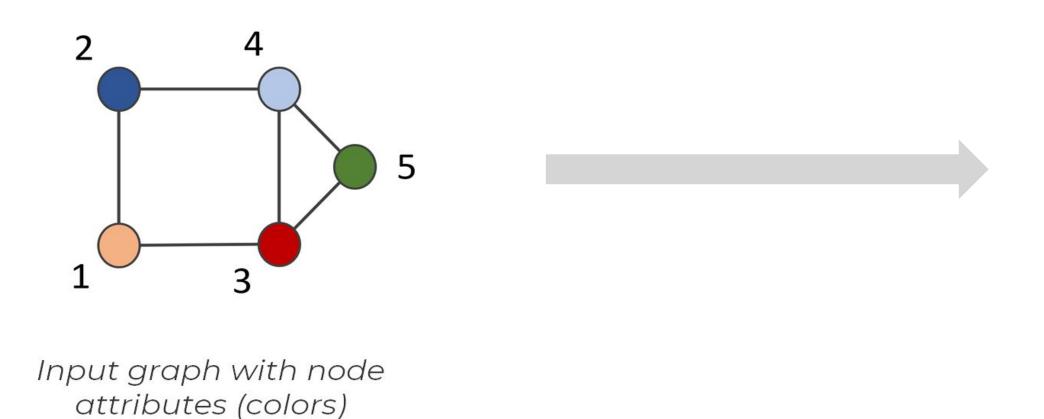
Neural Tree Architecture

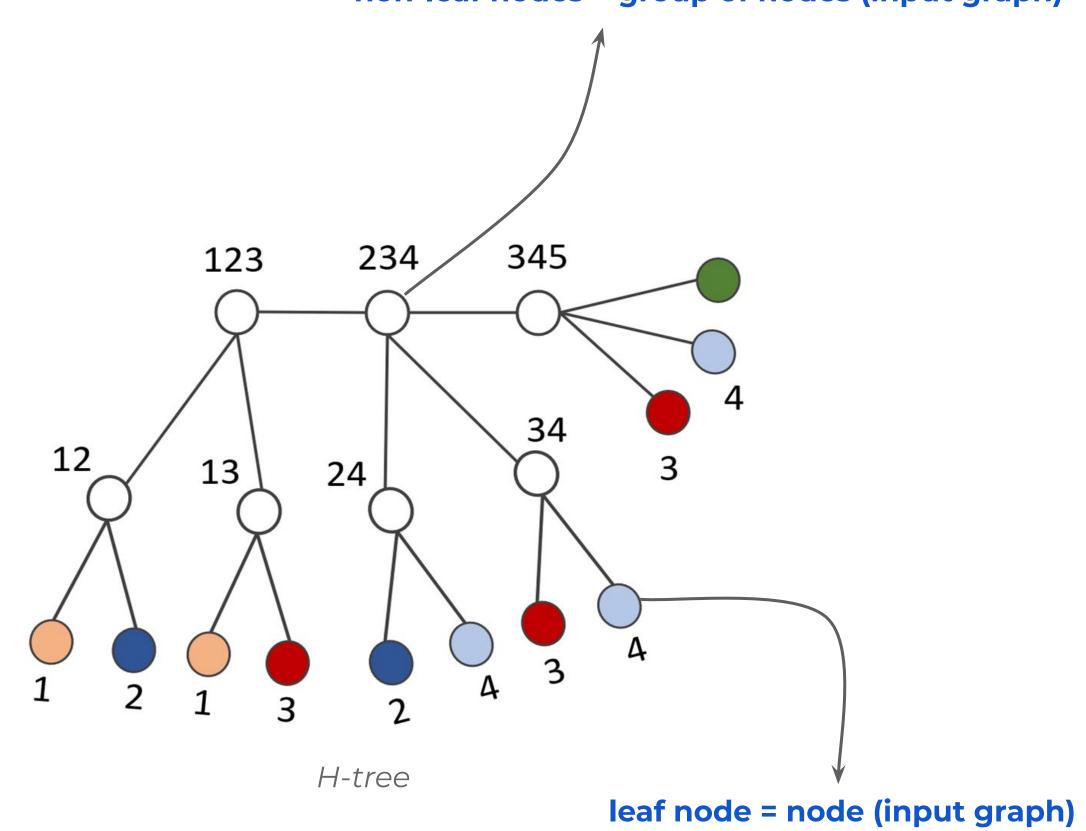
An architecture to approximate any (smooth) graph compatible function

non-leaf nodes = group of nodes (input graph)

Basic Idea

- 1. Convert graph to a tree, called H-tree
- 2. Neural Tree arch. = Message passing on the H-tree

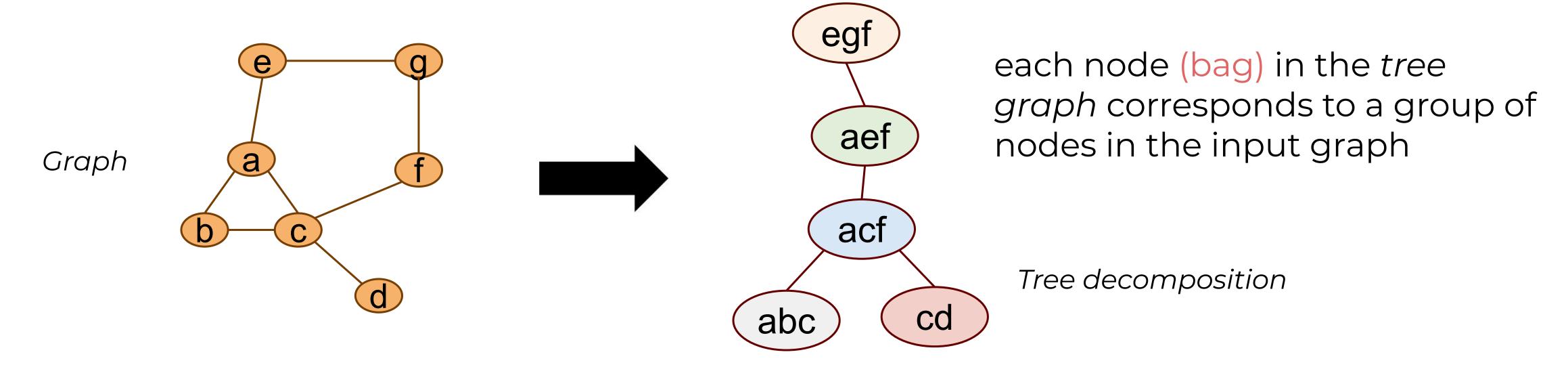




The H-tree is constructed by successive tree decomposition

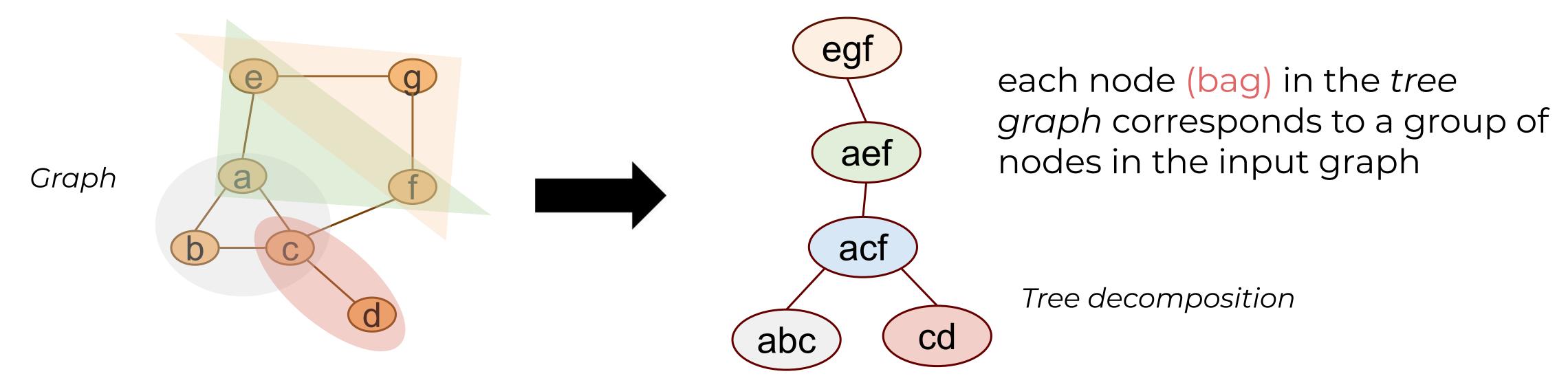
Recall: Tree Decomposition

Tree decomposition is a tree structured graph such that



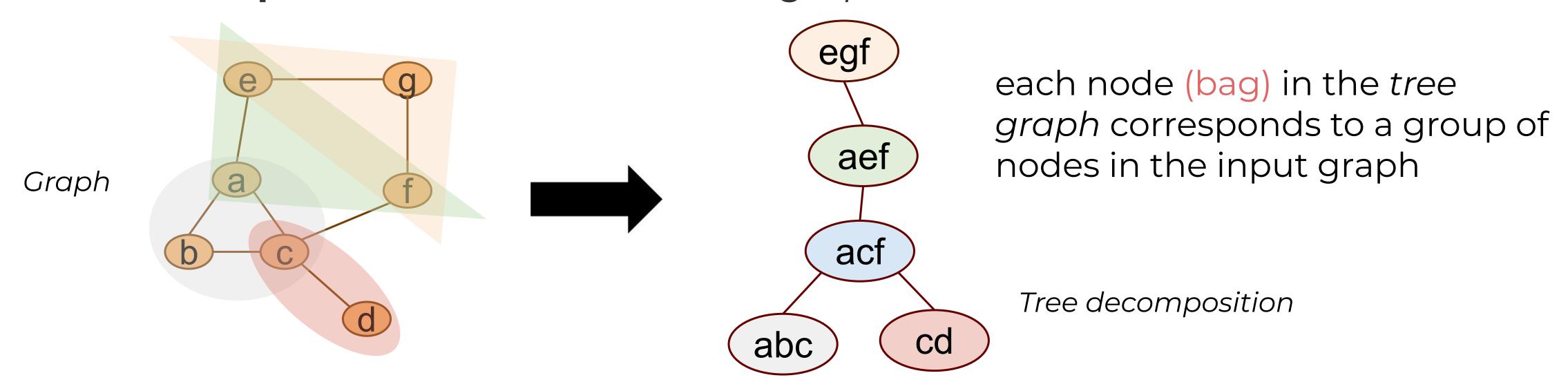
Recall: Tree Decomposition

Tree decomposition is a tree structured graph such that



Recall: Tree Decomposition

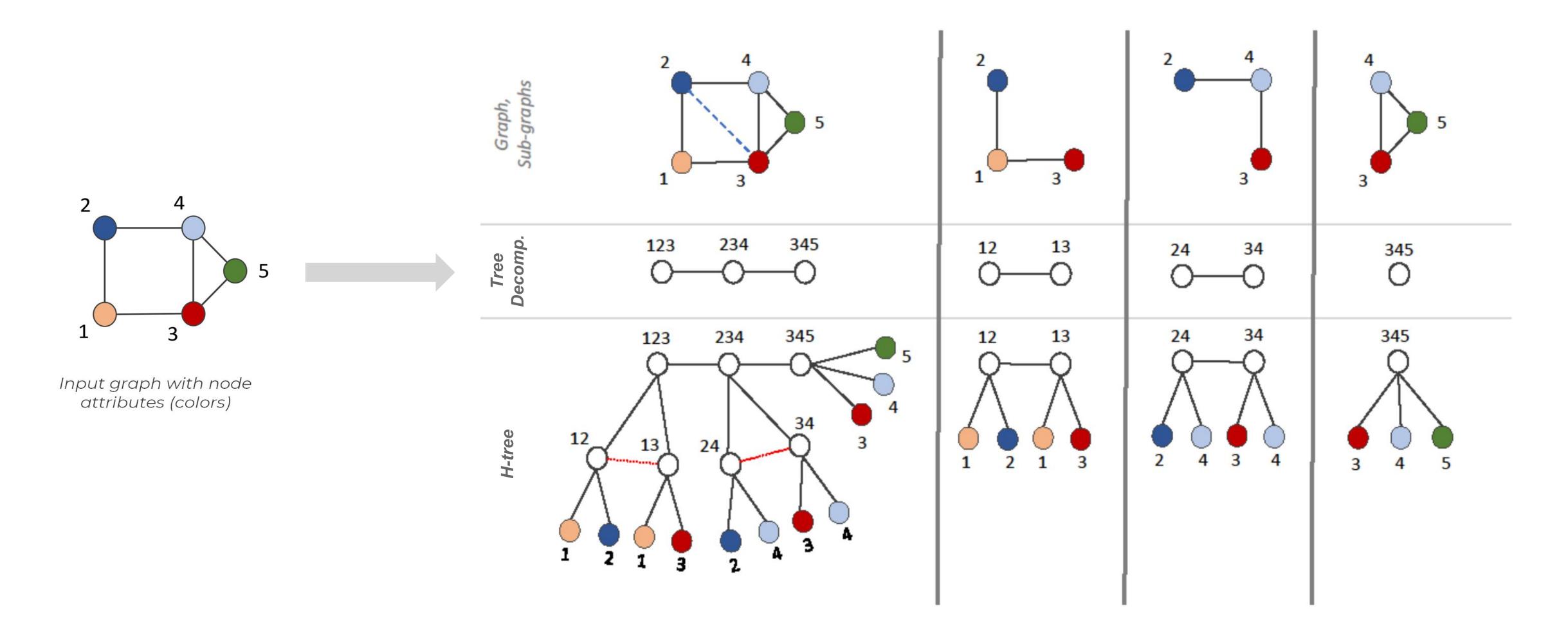
Tree decomposition is a tree structured graph such that



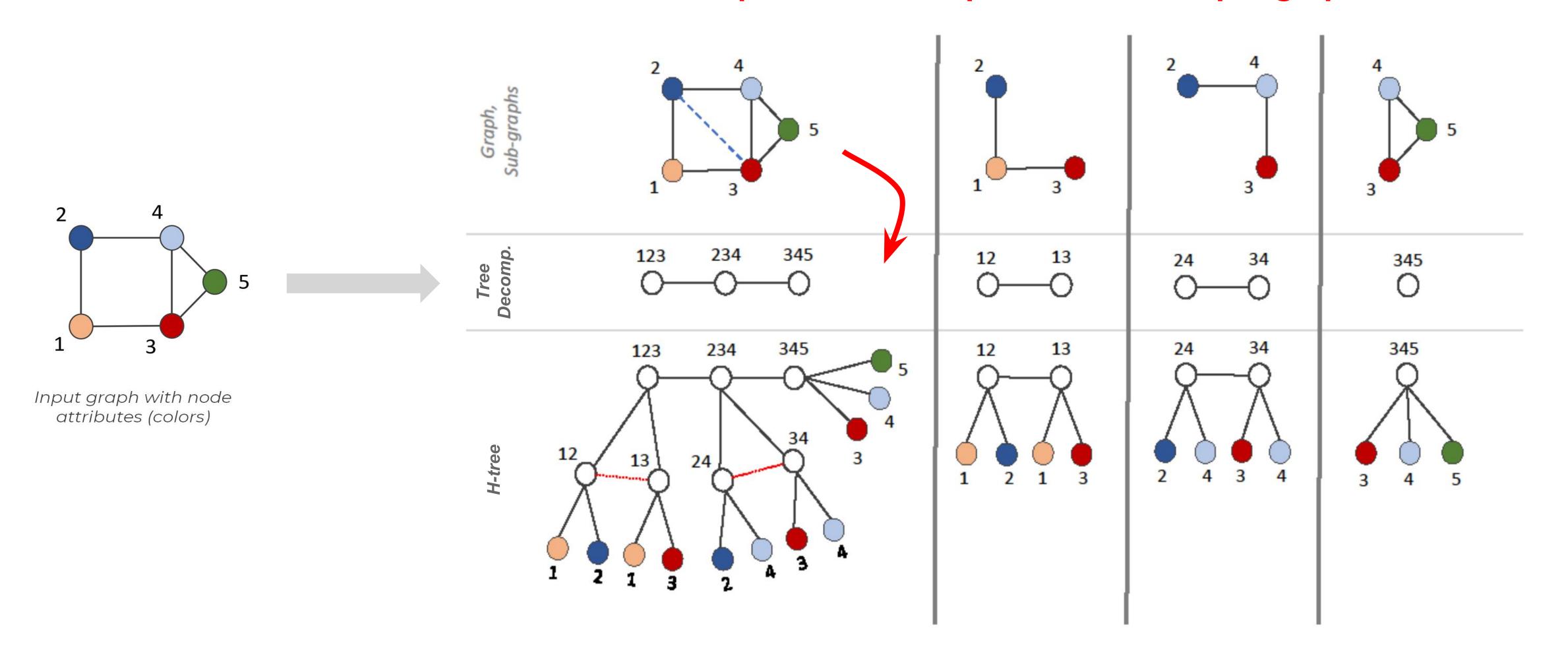
A well studied structure in graph optimization, combinatorial optimization, and probabilistic graphical models.

Junction Tree Algorithm:

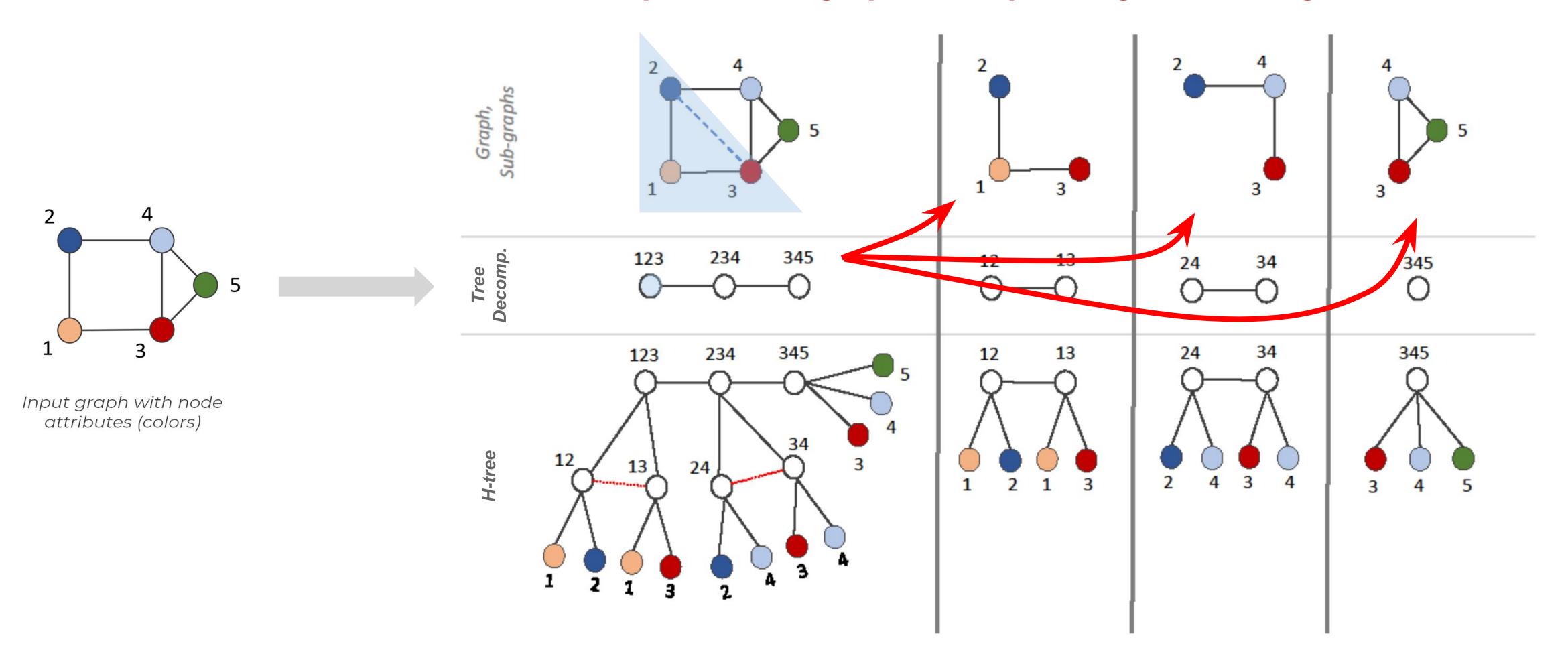
- Message passing on tree decomposition of input graph
- Algorithm for exact inference



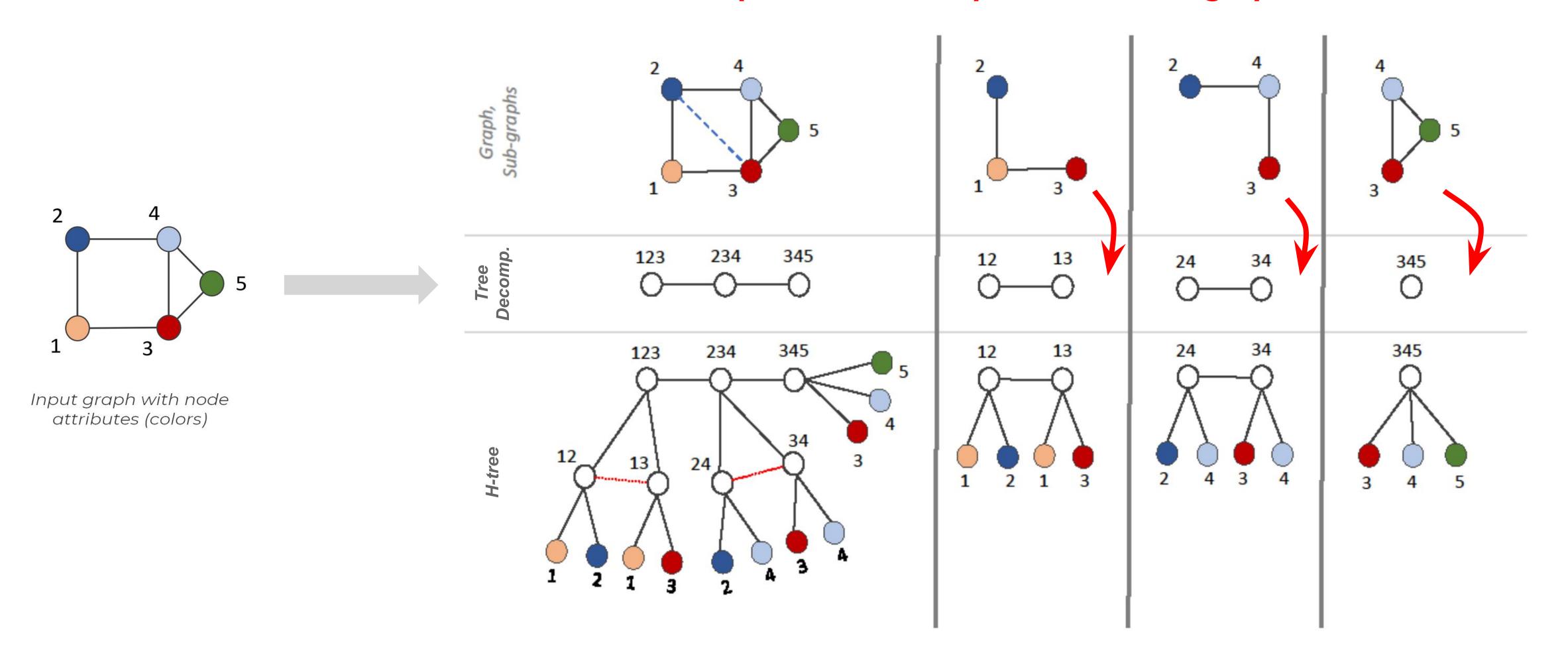
Step 1: Tree decomposition of the input graph



Step 2: Get subgraph corresponding to each bag

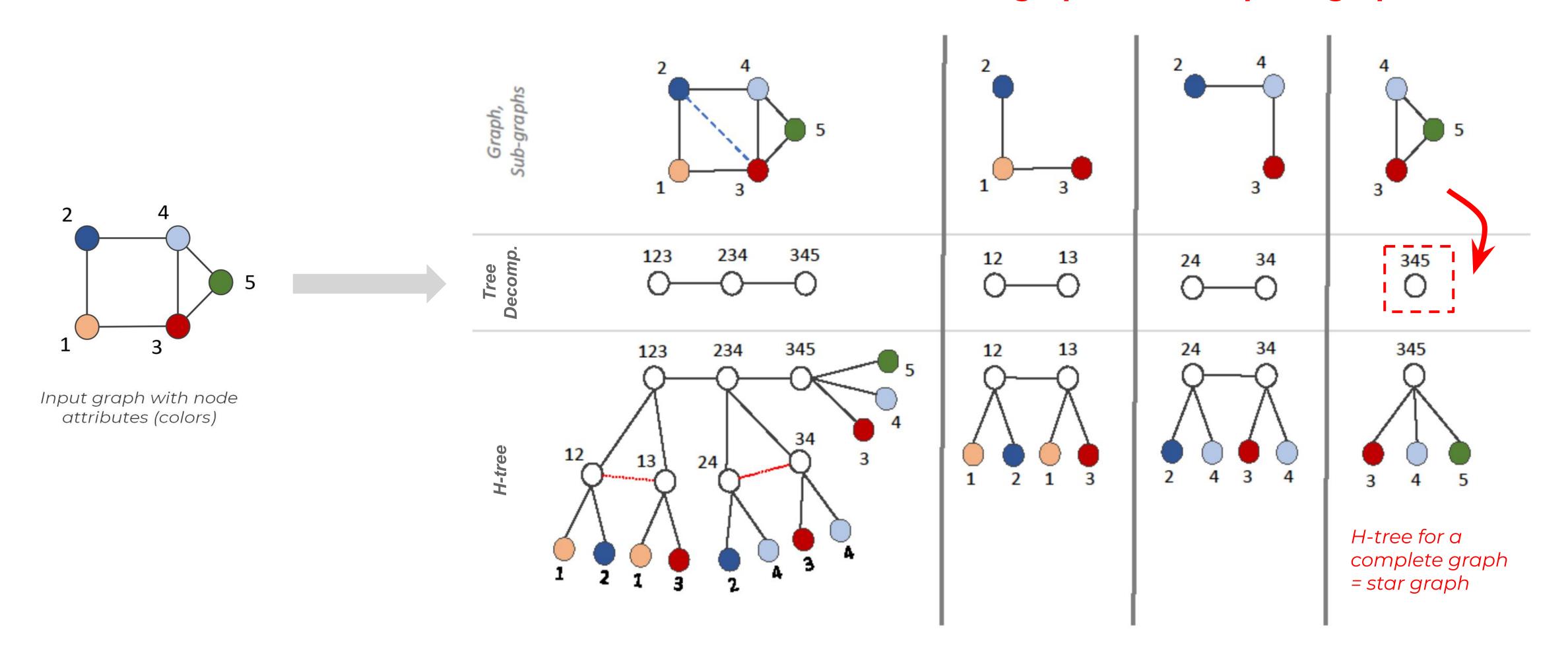


Step 3: Tree decomposition of sub-graphs



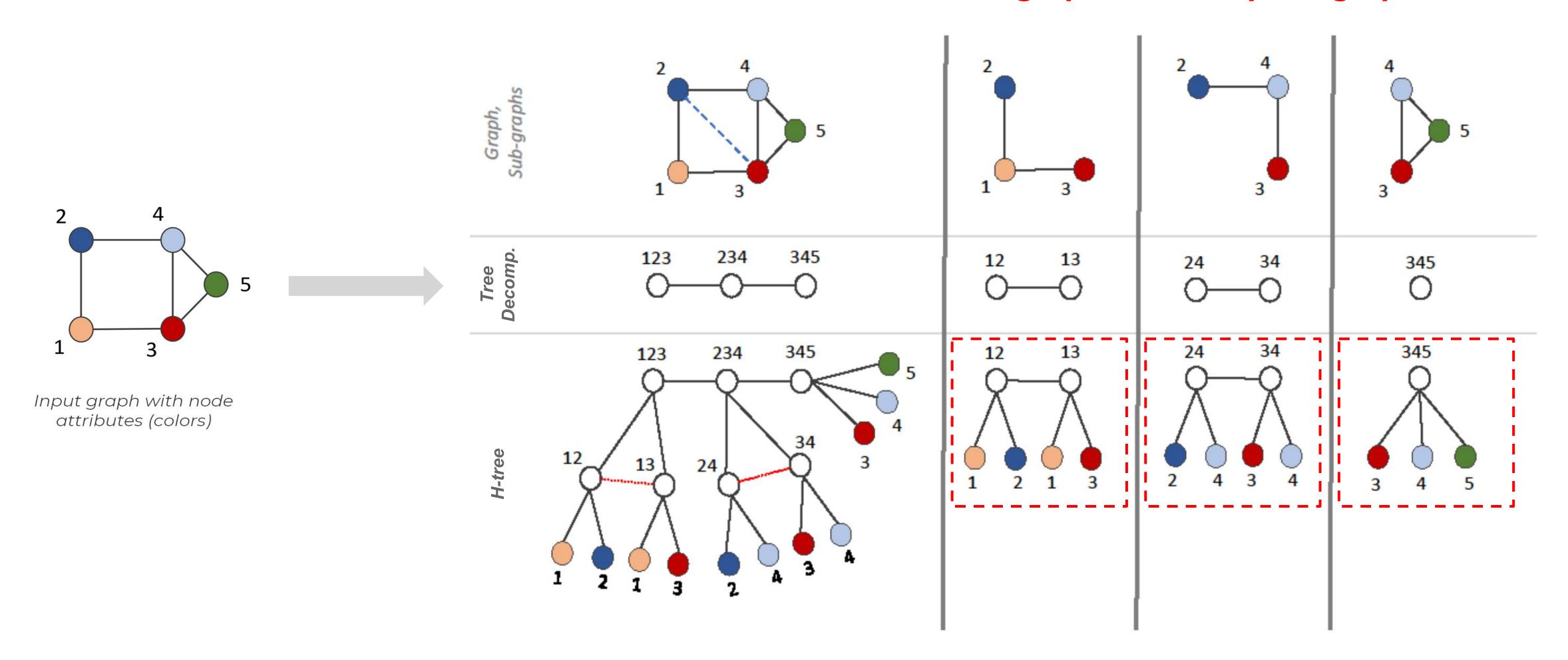
Successive tree decomposition

Iterate till all the sub-graphs are complete graphs



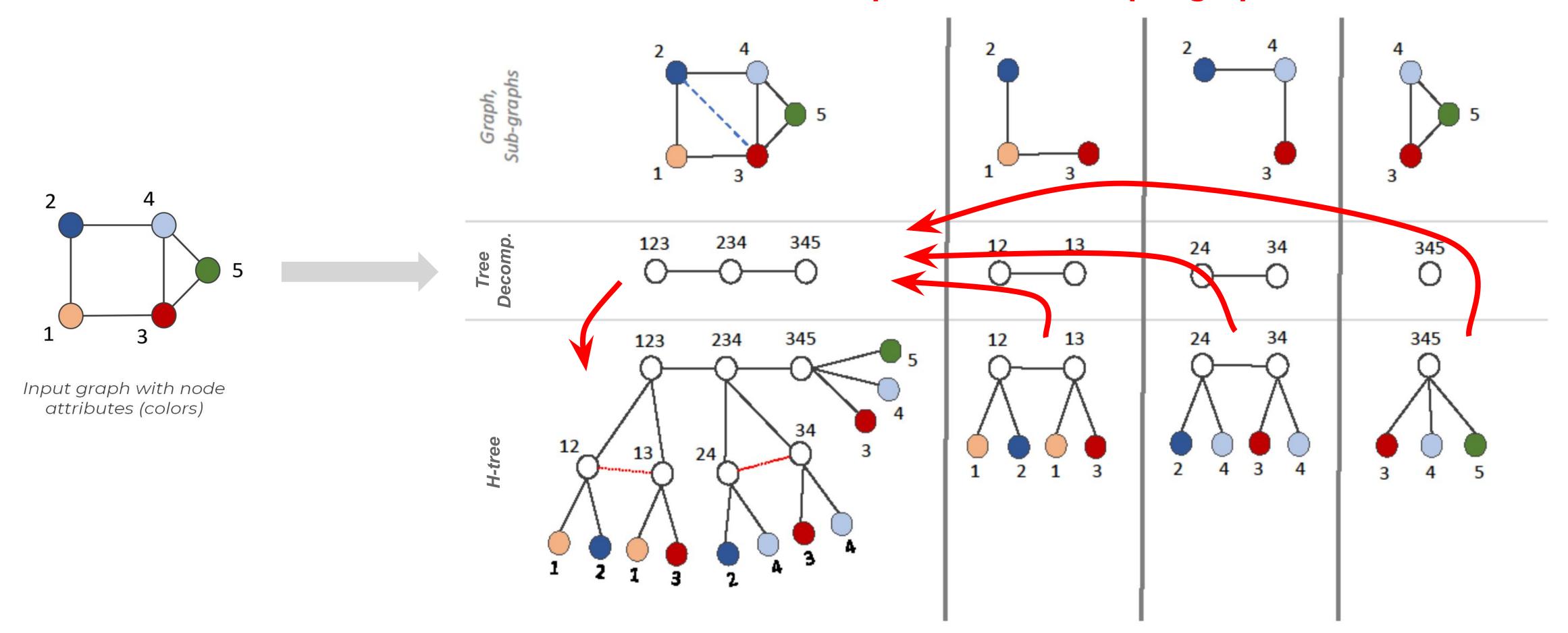
Successive tree decomposition

Iterate till all the sub-graphs are complete graphs



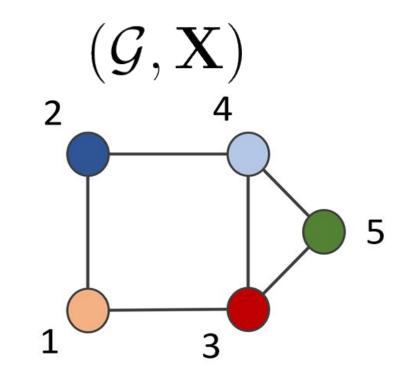
Successive tree decomposition

Finally, Connect all H-trees of sub-graphs to the tree-decomposition of the input graph



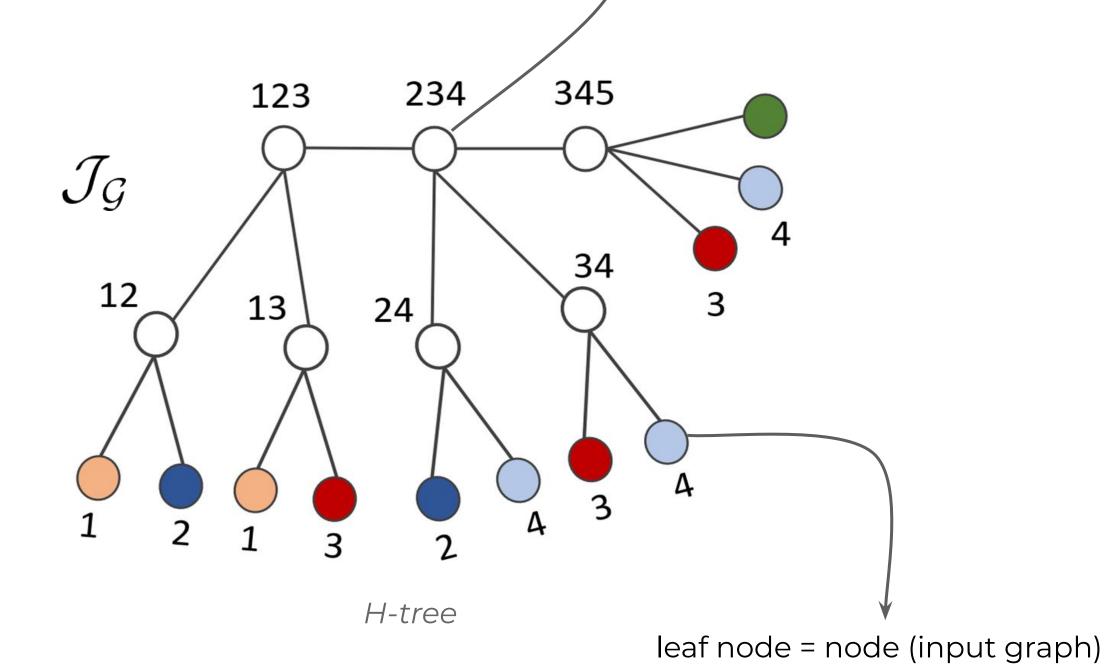
Neural Tree Architecture

1. Convert graph to a tree, called H-tree



Input graph with node attributes (colors)

successive Tree Decomposition



2. Neural Tree arch. = Message passing on the H-tree

$$\mathbf{h}_{u}^{t} = \mathrm{AGG}_{t}\left(\mathbf{h}_{u}^{t-1}, \left\{\left(\mathbf{h}_{w}^{t-1}, \kappa_{w,u}, \mathbf{h}_{u}^{t-1}\right) \mid w \in \mathcal{N}_{\mathcal{J}_{\mathcal{G}}}(u)\right\}\right) \qquad \text{with} \qquad \mathbf{h}_{u}^{0} = \begin{cases} \mathbf{X}_{k(u)} & \text{if } u \text{ is a leaf node of the problem} \\ \mathbf{0} & \text{otherwise} \end{cases}$$
Aggregation function

Approximation Results

Theorem: For any (smooth) graph compatible function

$$f(\mathbf{X}) = \sum_{C} \theta_C(\mathbf{x}_C)$$

and an $\epsilon>0$, there exists a Neural Tree model $g(\mathbf{X})$ with N weights/parameters such that

a.
$$||f-g||_{\infty}<\epsilon$$

b.
$$N = \mathcal{O}\left(n \cdot (\operatorname{tw}(G)/\epsilon)^{c \cdot \operatorname{tw}(G)}\right)$$

num. nodes in the graph treewidth of the tree-decomposition used

Approximation Results

Theorem: For any (smooth) graph compatible function

1-Lipschitz continuous

$$f(\mathbf{X}) = \sum_{C} \theta_{C}(\mathbf{x}_{C})$$

and an $\epsilon>0$, there exists a Neural Tree model $g(\mathbf{X})$ with N weights/parameters such that

a.
$$||f-g||_{\infty} < \epsilon$$

b.
$$N = \mathcal{O}\left(n \cdot (\operatorname{tw}(G)/\epsilon)^{c \cdot \operatorname{tw}(G)}\right)$$

num. nodes in the graph treewidth of the tree-decomposition used

Remarks

- Parameter complexity of Neural Tree
 - Linearly in graph size
 - Exponentially in graph treewidth
- Complexity of exact inference on graphical models
 - NP-hard
 - Exponential in graph treewidth

The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks

Gregory F. Cooper

Medical Computer Science Group, Knowledge Systems Laboratory, Stanford University, Stanford, CA 94305-5479, USA

ABSTRACT

Bayesian belief networks provided cies among a set of variables. For networks as a knowledge represe previously for efficient probability classes of belief networks, however show that probabilistic inference an exact algorithm can be developed belief networks. This result suggeneral, efficient probabilistic in average-case, and approximation

1. Introd

The graphical representa been the subject of consi

Complexity of Inference in Graphical Models

Venkat Chandrasekaran

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

It is well-known that inference in graphical models is hard in the worst case, but tractable for models with bounded treewidth. We ask whether treewidth is the only structural criterion of the underlying graph that enables tractable inference. In other words, is there some class of structures with unbounded treewidth in which inference is tractable? Subject to a combinatorial hypothesis due to Robertson et al. (1994), we show that low treewidth is indeed the only structural restriction that can ensure tractability. Thus, even for the "best case" graph structure, there is no inference algorithm with complexity polynomial in the

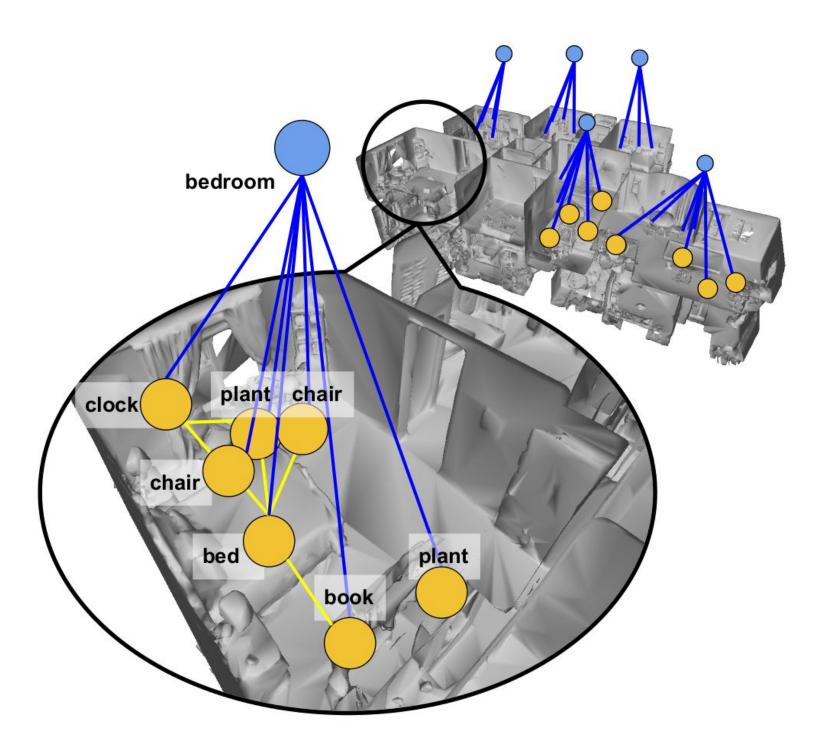
Nathan Srebro, Prahladh Harsha Toyota Technological Institute – Chicago Chicago, IL 60637

It is well-known that inference is NP-hard if no assumptions are made about the structure of the underlying graphical model (Cooper, 1990), and remains NP-hard even to approximate (Roth, 1996) — assuming P ≠ NP, for any algorithm there are some structures in which (approximate) inference takes time super-polynomial in the size of the structure. However, inference in specific structures can still be tractable. For models in which the underlying graph has low treewidth, the junction-tree method provides an effective inference procedure that has complexity polynomial in the size of the graph, though exponential in the treewidth.

The notion of treewidth (Robertson and Seymour 1983; 1986) has led to several results in graph theory (Robertson et al., 1994) and to practical algorithms for a large class of NP-hard problems (Freuder.

Experiments

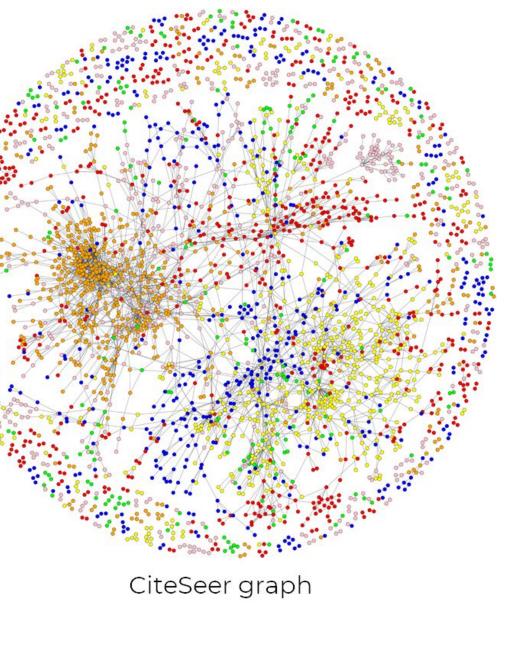
- 3D Scene Graphs
- Citation Networks



3D Scene Graphs (smaller graphs with low treewidth)

Citation Networks (large treewidth graphs)

	PubMed	CiteSeer	Cora
Nodes	19,717	3,327	2,708
Edges	44,338	4,732	5,429
Classes	3	6	7



Stanford 3D Scene Graph dataset

- 482 rooms with 15 categories
- · 2338 objects with 35 categories

3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera

Iro Armeni¹ Zhi-Yang He¹ JunYoung Gwak¹ Amir R. Zamir^{1,2}
Martin Fischer¹ Jitendra Malik² Silvio Savarese¹

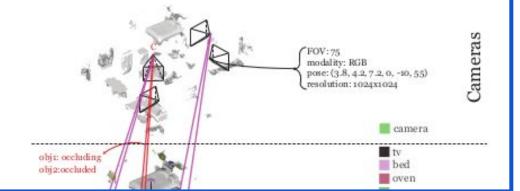
¹ Stanford University ² University of California, Berkeley

http://3dscenegraph.stanford.edu

Abstract

201

A comprehensive semantic understanding of a scene is important for many applications - but in what space should diverse semantic information (e.g., objects, scene categories, material types, texture, etc.) be grounded and what should be its structure? Aspiring to have one unified structure that hosts diverse types of semantics, we follow



Stanford 3D Scene Graph dataset

- 482 rooms with 15 categories
- · 2338 objects with 35 categories

3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera

Iro Armeni¹ Zhi-Yang He¹ JunYoung Gwak¹ Amir R. Zamir^{1,2}
Martin Fischer¹ Jitendra Malik² Silvio Savarese¹

¹ Stanford University ² University of California, Berkeley

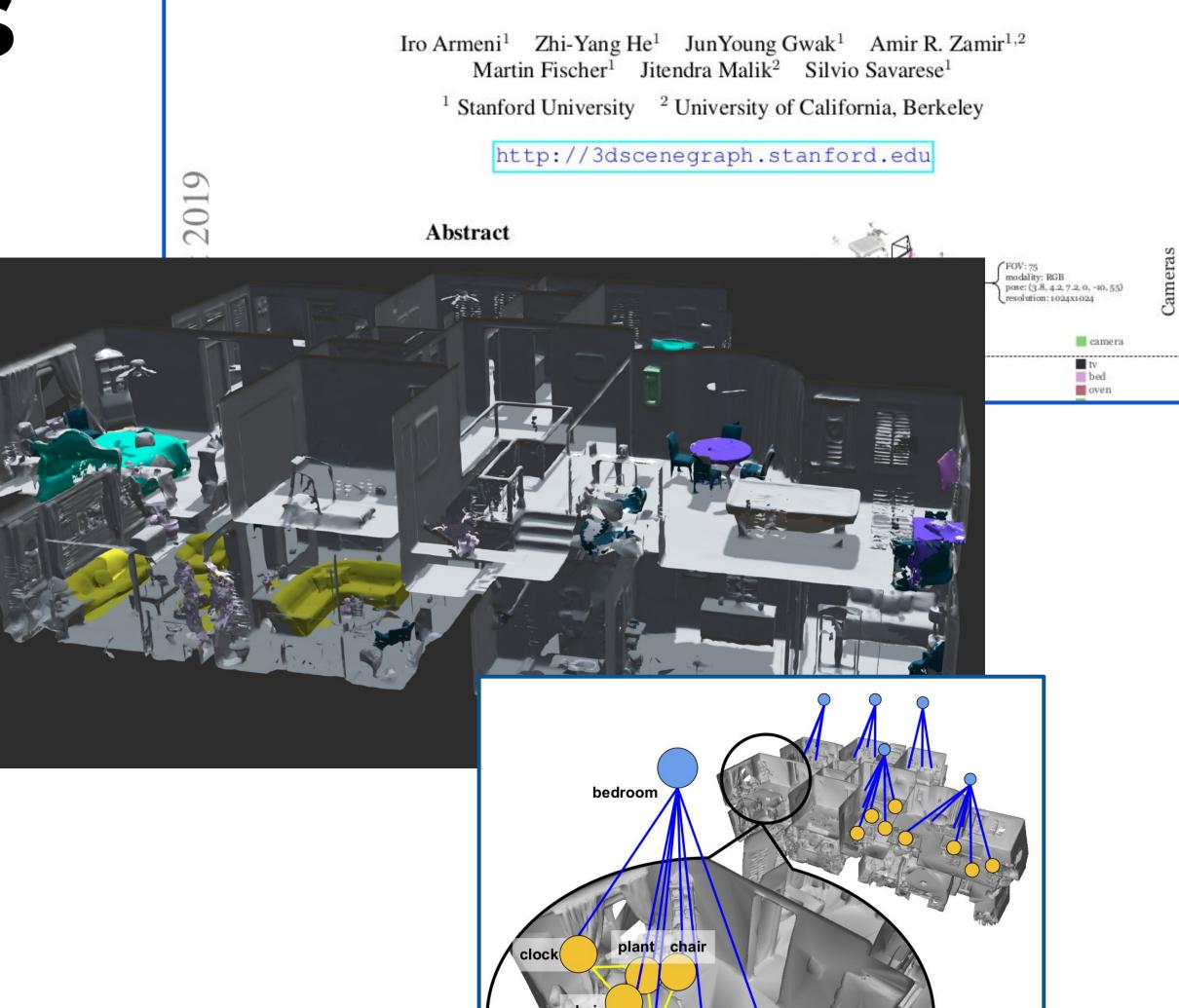
http://3dscenegraph.stanford.edu

Stanford 3D Scene Graph dataset

- 482 rooms with 15 categories
- · 2338 objects with 35 categories

We construct 3D Scene Graph by

Connecting nearby objects



3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera

Stanford 3D Scene Graph dataset

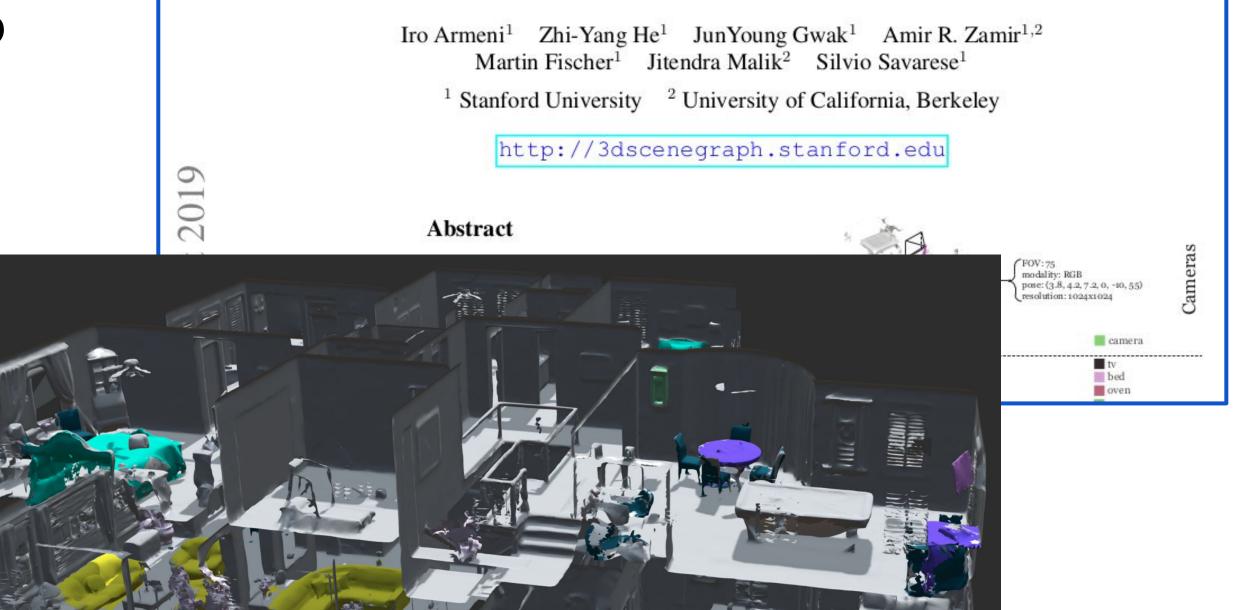
- 482 rooms with 15 categories
- · 2338 objects with 35 categories

We construct 3D Scene Graph by

Connecting nearby objects

Input feature for each node

centroid and bounding box dimension



3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera

Experiments and Results

Neural Tree vs traditional GNN

Compare Neural Tree message passing with GNN message passing, with same aggregation function

Test Accuracy*

$\overline{\text{AGG}_t}$	Input graph	Neural Tree
GCN	$40.88 \pm 2.28~\%$	$50.63 \pm 2.25 \%$
GraphSAGE	$59.54 \pm 1.35 \%$	$63.57 \pm 1.54 \%$
GAT	$46.56 \pm 2.21 \%$	$62.16 \pm 2.03 \%$
GIN	$49.25 \pm 1.15 \%$	$63.53 \pm 1.38 \%$

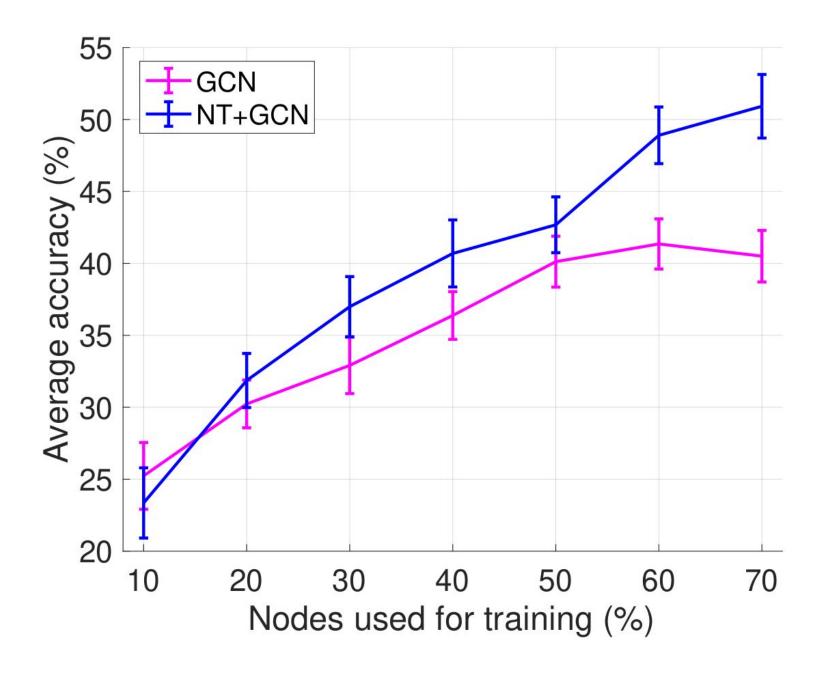
- Neural Tree always performs better than traditional GNN
- Always better to do message passing on H-tree

^{*}Random train/val/test (70/10/20) split

Experiments and Results

Increased training data

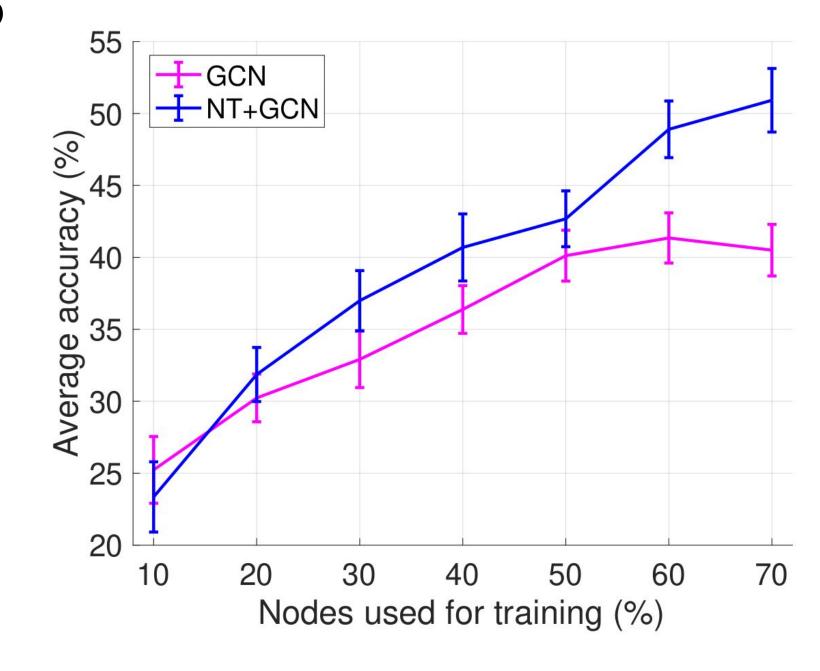
- Sharper increase with increasing training data for Neural Trees
- Performance of traditional GNN caps out

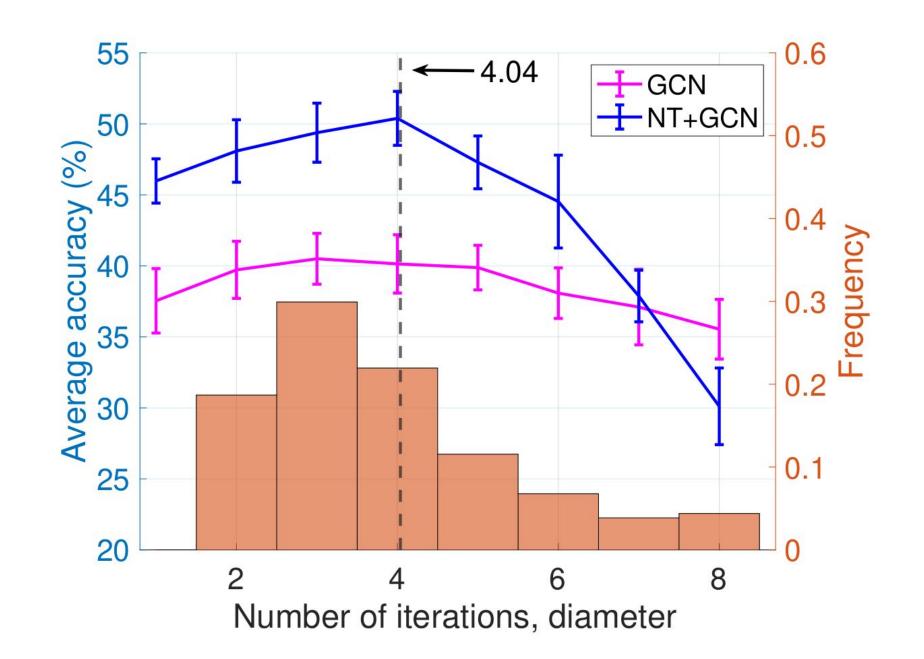


Experiments and Results

Increased training data

- Sharper increase with increasing training data for Neural Trees
- Performance of traditional GNN caps out





Number of message passing iterations

 Max attained at roughly the ave. diameter of the H-tree

Citation Networks

Does Neural Tree scale?

Bounded treewidth subgraph sampling + Neural Tree

Technical Presentation

WSDM '20, February 3-7, 2020, Houston, TX, USA

Sampling Subgraphs with Guaranteed Treewidth for Accurate and Efficient Graphical Inference

Jaemin Yoo Seoul National University Seoul, Republic of Korea jaeminyoo@snu.ac.kr U Kang* Seoul National University Seoul, Republic of Korea ukang@snu.ac.kr Mauro Scanagatta Fondazione Bruno Kessler Trento, Italy mscanagatta@fbk.eu

Giorgio Corani IDSIA Lugano, Switzerland giorgio@idsia.ch

ABSTRACT

How can we run graphical inference on large graphs efficiently and accurately? Many real-world networks are modeled as graphical models, and graphical inference is fundamental to understand the properties of those networks. In this work, we propose a novel approach for fast and accurate inference, which first samples a small subgraph and then runs inference over the subgraph instead of the given graph. This is done by the bounded treewidth (BTW) sampling, our novel algorithm that generates a subgraph with guaranteed bounded treewidth while retaining as many edges as possible. We first analyze the properties of BTW theoretically. Then, we evaluate our approach on node classification and compare it with the baseline which is to run loopy belief propagation (LBP) on the original graph. Our approach can be coupled with various inference algorithms: it shows higher accuracy up to 13.7% with the junction tree algorithm, and allows faster inference up to 23.8 times with LBP. We further compare BTW with previous graph sampling algorithms and show that it gives the best accuracy.

Marco Zaffalon IDSIA Lugano, Switzerland zaffalon@idsia.ch

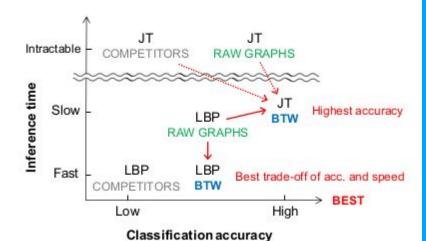


Figure 1: Advantages of BTW with two kinds of inference algorithms. BTW a) gives the best accuracy when the junction tree (JT) algorithm is used and b) speeds up the inference without hurting accuracy when LBP is used.

CCS CONCEPTS

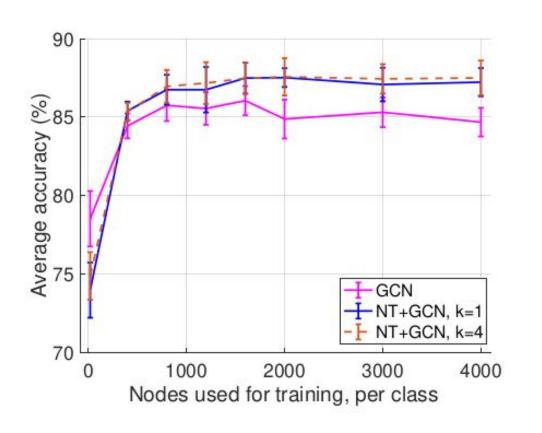
Citation Networks

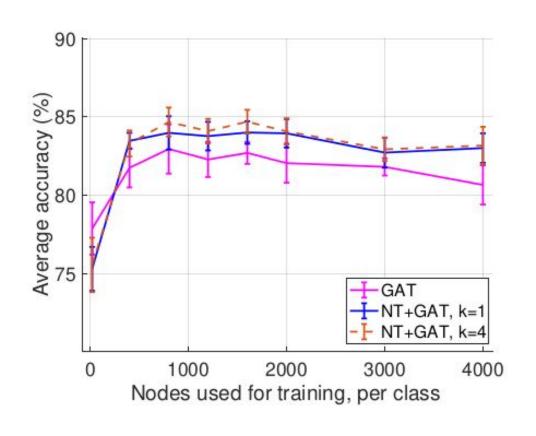
Does Neural Tree scale?

Bounded treewidth subgraph sampling + Neural Tree

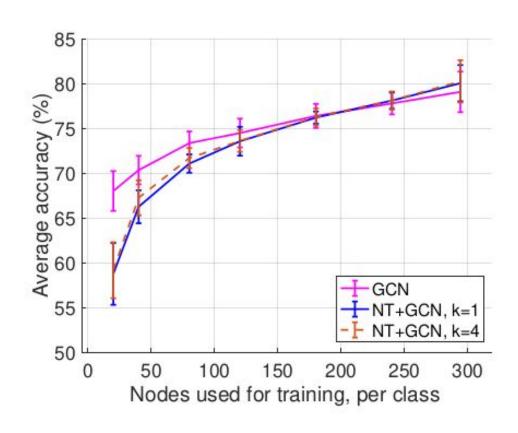
- Neural Tree attains the same performance as GNN, even for small treewidth bound
- Neural Tree is data hungry.
 Does not perform well with less training data.

Tree width bounds k = 1 and 4

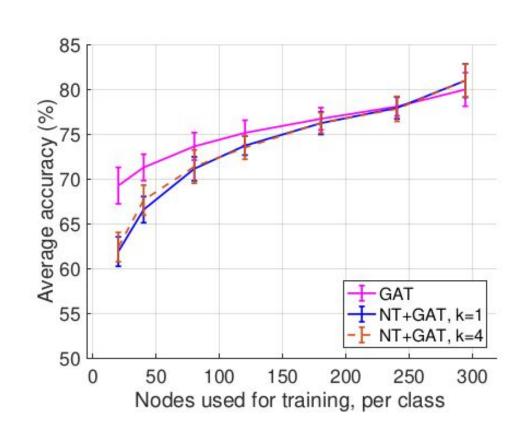




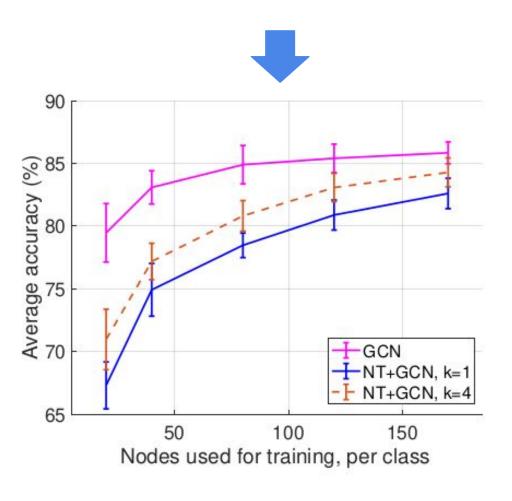
(d) NT+GAT on PubMed



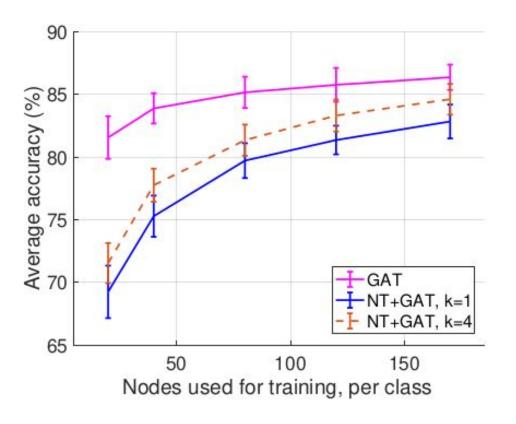
(b) NT+GCN on CiteSeer



(e) NT+GAT on CiteSeer

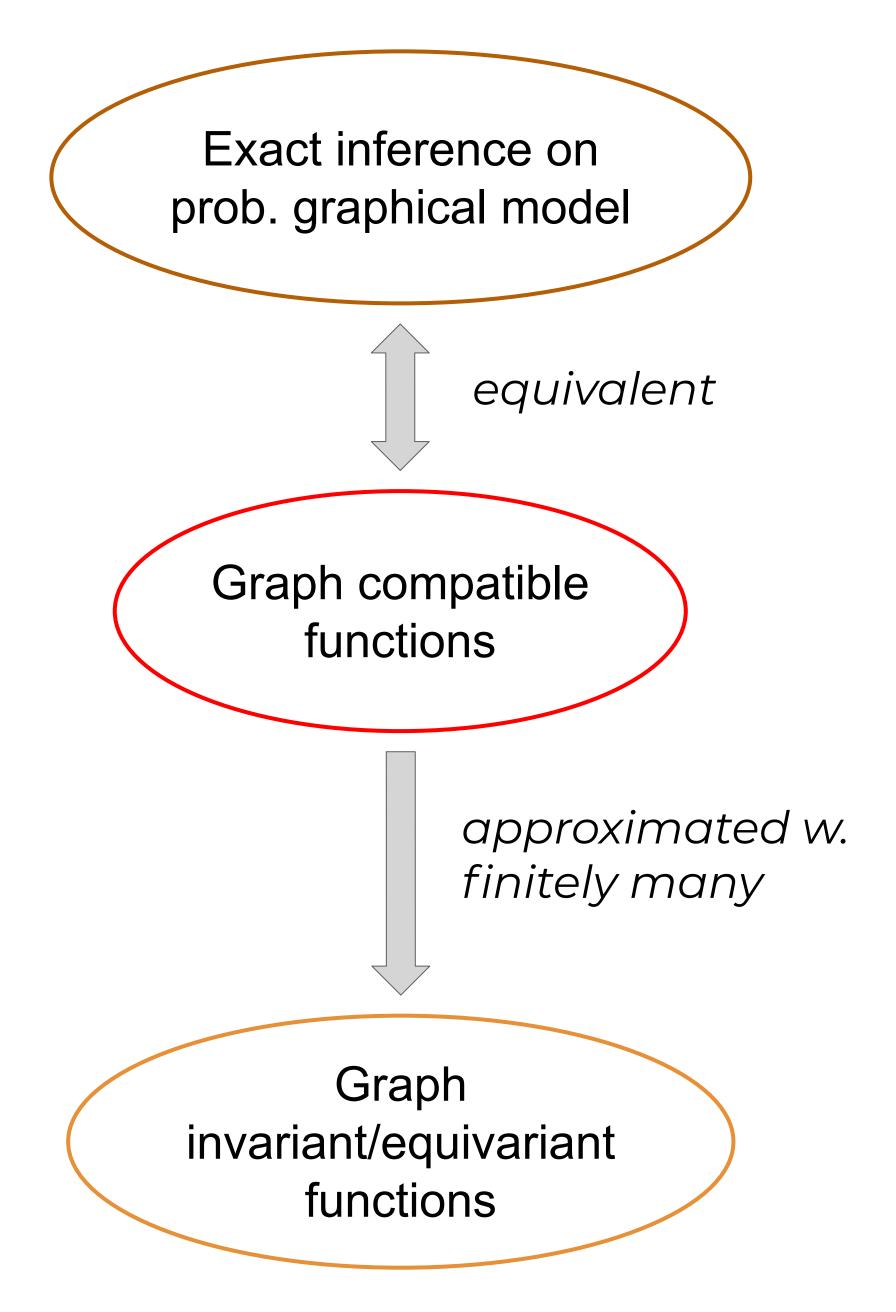


(c) NT+GCN on Cora

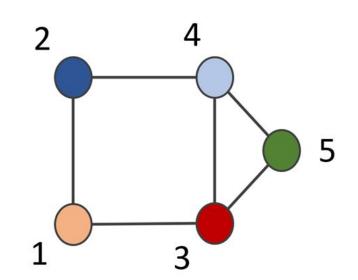


(f) NT+GAT on Cora

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Scalable Neural Tree

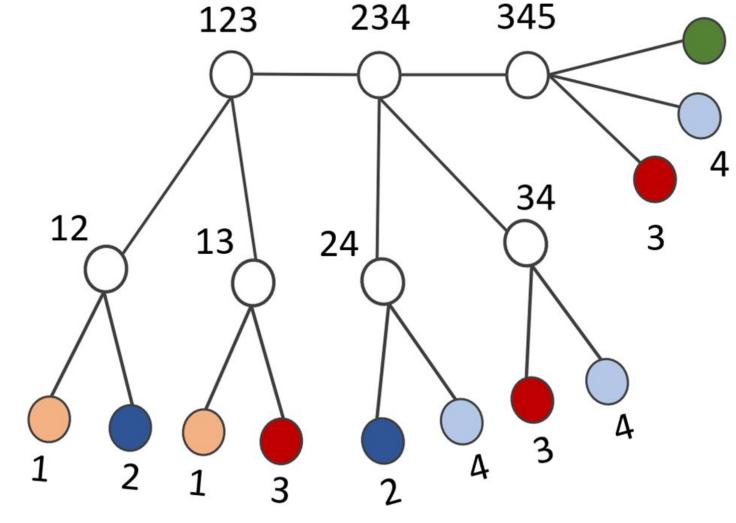


- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Scalable Neural Tree



Input graph with node attributes (colors)

Generate a tree structured graph called *H-tree*



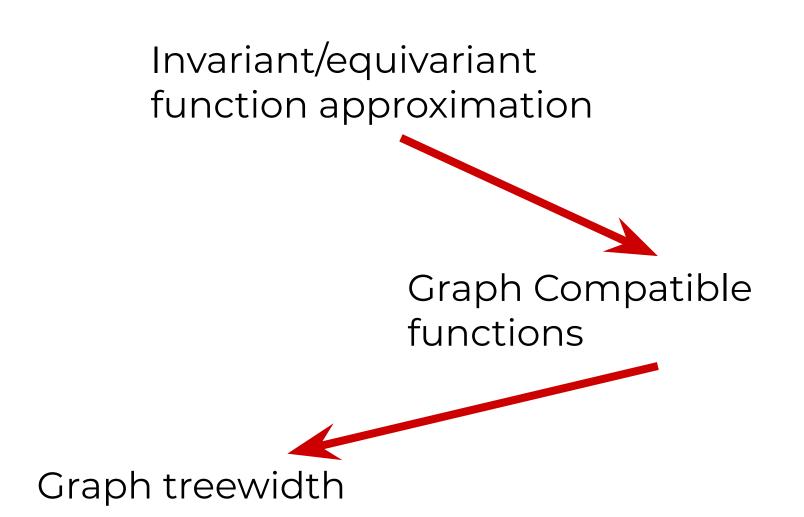
Generated tree structured graph

Neural Tree is message passing on H-tree

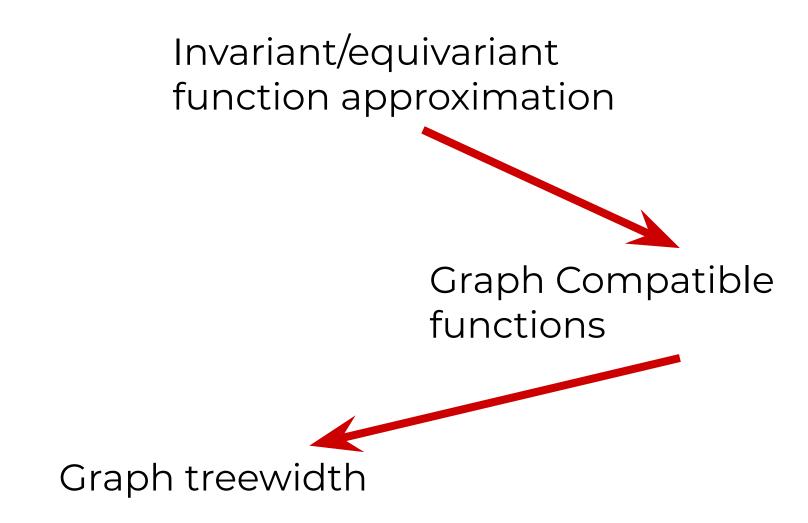
- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Scalable Neural Tree

Parameter complexity

$$N = \mathcal{O}\left(n \cdot (\operatorname{tw}(G)/\epsilon)^{c \cdot \operatorname{tw}(G)}\right)$$
 num. nodes treewidth approx. distance



- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Scalable Neural Tree



Result may be repurposed to other GNNs that extract hierarchical features

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Scalable Neural Tree

Bounded treewidth subgraph sampling + Neural Tree

- Graph compatible functions
- Neural Tree architecture
- Approximation Results
- Scalable Neural Tree

Neural Tree is a general architecture

Remains to be applied to graph classification, link prediction, etc.

Questions, Comments, Related Work

Rajat Talak <u>talak@mit.edu</u>

Siyi Hu <u>siyi@mit.edu</u>

Lisa Peng <u>lisapeng@mit.edu</u>

Luca Carlone <u>lcarlone@mit.edu</u>

