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Motivation

Automated generation of 3
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Motivation

Automated generation of 3
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A problem encountered in automatic 3

D scene graphsis an important problem
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how to predict the missing?



Semi-supervised Node Classification

<
Given a graph with some nodes labeled, how do

O we assign labels to other nodes?
7 ’




Semi-supervised Node Classification
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Given a graph with some nodes labeled, how do
we assign labels to other nodes?

Well studied problem in social networks.

. Examples: document classification, webpage
classification, user behavior on social networks ...

Datasets: Plantoid, OGB, ...
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Given a graph with some nodes labeled, how do
we assign labels to other nodes?

Well studied problem in social networks.

. Examples: document classification, webpage
classification, user behavior on social networks ...

Datasets: Plantoid, OGB, ...

State-of-the-art approaches
« Graph Neural Networks



Graph Neural Networks

Basic idea: Iteratively aggregate representation and feature vectors of neighbors

b, = ACC, (W {(hS ! ke b | w € NG(0)))

Read label after T iterations:




Graph Neural Networks

Basic idea: Iteratively aggregate representation and feature vectors of neighbors
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Read label after T iterations:

y, = READ(h!)

[llustration

0 _
h, = x,
Simple idea, but Increasing concerns about limited expressive power



Expressivity Bottlenecks of GNNs

Approximate any graph invariant/equivariant function is an open challenge

Invariance: output invariant to node permutation. eg. graph classification

Equivariance: output commutes with node permutation. eg. node classification
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Message-passing has proved to be an effective way to design graph neural networks,
as it is able to leverage both permutation equivariance and an inductive bias towards
learning local structures in order to achieve good generalization. However, current
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Abstract in its neighborhood, and the final feature representation of
a graph is the histogram of the resulting node colors. By
iteratively aggregating over local node neighborhoods in this

PP ARE T, SN i QI Sa e D SAGNEy W rater, [ ARy vl [ O b LAY B SRR R S R S S LA ©, By

In recent years, graph neural networks (GNNs) have emerged as
a powerful neural architecture to learn vector representations
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Abstract

While massage passing based Graph Neural Networks (GNNs) have become increasingly popular
architectures for learning with graphs, recent works have revealed important shortcomings in their
expressive power. In response, several higher-order GNNs have been proposed, which substantially
increase the expressive power, but at a large computational cost. Motivated by this gap, we introduce
and analyze a new recursive pooling technique of local neighborhoods that allows different tradeoffs of
computational cost and expressive power. First, we show that this model can count subgraphs of size




Models for Scene Graphs

Probabilistic graphical models have been used to describe scene graphs
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Figure 1: Our algorithm processes raw scene graphs with possible over-segmentation (a), obtained from repositories such as the Trimble
Warehouse, into consistent hierarchies capturing semantic and functional groups (b,c). The hierarchies are inferred by parsing the scene
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Models for Scene Graphs

Probabilistic graphical models have been used to describe scene graphs

1

p(X|G) =~ || ve(xe)

Example: Markov Random Field

QY

product of
cligue potentials

O O
p(x1,. .. x4|G) = melall® ¢ o=l
| G) =



Models for Scene Graphs

Probabilistic graphical models have been used to describe scene graphs

Example: Markov Random Field
X|g | | 77/)0 XC
X1 X9 X3 X4
O O O- O
(X JH 1 —||x1—xz|| —||x2—x3||° —||x3—x4||4
product of L. S P .)\;|Q} = ?f . L O - L LI " - 3 L 1

cligue potentials

Exact inference i1s NP-hard and exponential in graph treewidth



Contributions

» Graph compatible functions
- Neural Tree architecture
- Approximation Results

+ Experiments



CO ntri bUtiOnS Exact inference on

prob. graphical model

» Graph compatible functions
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» Graph compatible functions
- Neural Tree architecture
- Approximation Results
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Contributions

» Graph compatible functions
- Neural Tree architecture
- Approximation Results

+ Experiments

Any (smooth) graph compatible function can be approximated by a Neural Tree
with number of weights/parameters

N=0 (n (tw(G) e)c'tW<G>)
o
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bounded treewidth subgraph sampling + Neural Tree
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In the remaining time ...

» Graph compatible functions
- Neural Tree architecture
- Approximation Results

+ Experiments



Graph Compatible Function

A function on input node features

X = (X1,X9,...Xp)

IS sald to be graph compatible w.r.t. graph g 1T It
can be written as

F(X)=» bo(xc)
O A

|

sum over all cliques
In the graph

function over hode
features in the clique



Graph Compatible Function

A function on input node features Examples

R > ~<:
IS said to be graph compatible w.r.t. graph g IT It X9 X

can be written as

F(X)=» bo(xc)
C A

|

sum over all cliques
In the graph

function over hode
features in the clique



Graph Compatible Function

A function on input node features Examples

R > ~<:
IS said to be graph compatible w.r.t. graph g IT It X9 X6

can be written as

F(X)=» bo(xc)
C A

|

sum over all cliques
In the graph

f(x1,...Xg) = X1X9X3 + X3X4 + X4X5X¢6

function over hode
features in the clique



Graph Compatible Function

A function on input node features Examples
X5
X = (X1,X9,...Xp) X1
IS said to be graph compatible w.r.t. graph g IT It X6

can be written as

F(X)=» bo(xc)
C A

f(x1,...Xg) = X1X9X3 + X3X4 + X4X5X¢6

X1 X2 X3 X4
O O O @

sum over all cliques

in the graph f(x1,...x4) = ||x1 — xa2|| + ||x2 — x3|| + ||x3 — x4]]

function over hode
features in the clique



Graph Compatible Function

A function on input node features Examples
X5
X = (x1,X2,...Xp) X4
IS said to be graph compatible w.r.t. graph g IT It X6

can be written as

F(X)=» bo(xc)
C A

f(x1,...Xg) = X1X9X3 + X3X4 + X4X5X¢6

X1 X2 X3 X4
O O O
sum over all cliques
In the graph f(x1,...x4) = [|x1 — Xo|| + [|x2 — x3]| + |[x3 — x4]]

function over hode
features in the clique



Relevance: Graphical Models

Graph compatible functions arise naturally in probabilistic graphical
models

p(X|G) = ch Xc) = exp{— f( ) 0g(Z)}

T

prob. distribution clique potential graph compatible
over graph function




Relevance: Graphical Models

Graph compatible functions arise naturally in probabilistic graphical
models

1
p(X19) = - [[ velxe) = exp{~f(X) ~ log(2)}
| ] |
prob. distribution cligue potential graph compatible
over graph function

Example: Markov Random Field

X1 X9 X1 X4 X1
O O o—O O
( G) = LIl y o=lha—xsll  o=lixs =l

= exp{—f(X) —log(Z)}




Relevance: Approximating Inference

Graph compatible functions arise naturally in probabilistic graphical

models
p(X|G) = Hl/JC xc) = exp{—f(X) —log(Z)}
prob. distribution clique potential graph compatible
over graph function

Implication:

Approximating graph Approximating exact inference on
compatible functions probabilistic graphical models

(see Appendix A In the paper).



Relevance: Approx. Invariant/Equivariant

Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant

functions.

Invariant function
h(X?,G%) = h(X, G)

for all node permutations o

sg




Relevance: Approx. Invariant/Equivariant
Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant
functions.

Invariant function ? Q
h(X7,G%) = h(X, G) h(j:i) = h(

for all node permutations o

Theorem:

For every invariant function h andane > ( |
there exists A/ graph compatible functions fl
such that

M
sup |h(X) — Zqﬁ (f'(X))| <e

some non-linear function @ R — R



Relevance: Approx. Invariant/Equivariant
Functions

We prove that graph compatible functions can be used to approximate graph invariant/equivariant
functions.

Invariant function ? Q
hX7.G7) = h(X.G) h(}:{) = h(

for all node permutations o

Theorem:
For every invariant function f andan e > () | Similar result holds for
there exists J/ graph compatible functions f* equivariant functions
such that

M

sup |h(X) — Zgb (f'(X))| <e

some non-linear function ¢ R — R




Neural Tree Architecture

An architecture to approximate any (smooth) graph compatible function

Basic Idea

1. Convert graph to a tree, called H-tree
2. Neural Tree arch. = Message passing on the H-tree

2 4
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1 3

Input graph with node
attributes (colors)
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Neural Tree Architecture

An architecture to approximate any (smooth) graph compatible function

Basic Idea

1. Convert graph to a tree, called H-tree
2. Neural Tree arch. = Message passing on the H-tree

2 4
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Input graph with node
attributes (colors)
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non-leaf nodes = group of nodes (input graph)

234 345
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H-tree ¢

leaf node = node (input graph)



Neural Tree Architecture

An architecture to approximate any (smooth) graph compatible function non-leaf nodes = group of nodes (input graph)

Basic Idea

1. Convert graph to a tree, called H-tree

2. Neural Tree arch. = Message passing on the H-tree
123 234 345

()

2 4 4
' 34
. 12 13 24 3

°*v

H-tree ¢
leaf node = node (input graph)

Input graph with node
attributes (colors)

The H-tree is constructed by successive tree decomposition



Recall: Tree Decomposition

Tree decomposition is a tree structured graph such that
each node IN the tree

graph corresponds to a group of
aef nodes in the input graph

acf

Tree decomposition




Recall: Tree Decomposition

Tree decomposition is a tree structured graph such that

e each node IN the tree
7 ﬁ]) graph corresponds to a group of
Graph = f aef nodes in the input graph
N ‘
@é— C acf
b Tree decomposition



Recall: Tree Decomposition

Tree decomposition is a tree structured graph such that

(egf>

e each node (bag) In the tree
7 graph corresponds to a group of
Graph = f l aef nodes in the input graph
(b—(c’ acf
G) Tree decomposition

A well studied structure in graph optimization, combinatorial optimization, and
probabililistic graphical models.

Junction Tree Algorithm:
. Message passing on tree decomposition of input graph
. Algorithm for exact inference



H-tree Construction

Successive tree decomposition

Input graph with node
attributes (colors)

Graph
Sub-graphs

Tree
Decomp.

H-tree

123 234 345
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H-tree Construction

Successive tree decomposition . ,
Step 1: Tree decomposition of the input graph

2 2 - 4
5 | ‘ v 5
1 3 3 3

Graph
Sub-graphs

2 4
‘ \ . g_ 123 234 345 12 13 24 34 345
5 O0—O0—0 O0—O 0—O O
Q

12 13 24 34 345

Input graph with node
attributes (colors)

H-tree




H-tree Construction

Successive tree decomposition

Input graph with node
attributes (colors)

Graph
Sub-graphs

Tree
Decomp.

H-tree

123 234
—=0O

Step 2: Get subgraph corresponding to each bag
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H-tree Construction

Successive tree decomposition

Input graph with node
attributes (colors)

Graph
Sub-graphs

Tree
Decomp.

H-tree

123 234 345
O—CO0—-=0

Step 3: Tree decomposition of sub-graphs
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H-tree Construction

Successive tree decomposition ,
Iterate till all the sub-graphs are complete graphs
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H-tree for a
complete graph
= star graph




H-tree Construction

Successive tree decomposition

Input graph with node
attributes (colors)
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H-tree Construction

Successive tree decomposition

Input graph with node
attributes (colors)

Graph
Sub-graphs

Tree
Decomp.

H-tree

123 234
o—=0

Finally, Connect all H-trees of sub-graphs to the
tree-decomposition of the input graph

2 4 4
I T |
3 3

ZI—‘
1 3
345 ‘ 24 34 34

O O—CO S—C O

345 12 13 24 34 345
o§35
34
3
' 1 g 1 3 2 4 3 - 3 4 5



non-leaf nodes = set of nodes (iInput graph)

Neural Tree Architecture

1. Convert graph to a tree, called H-tree 123 234 345
s

(G, X) Jg
2 4 )
' S successive Tree Decomposition 12 13 24 =y 3
5
O
S

1 3 6
1 A

2 1 3 9

Input graph with node
attributes (colors)

H-tree ¢
leaf node = hode (input graph)

2. Neural Tree arch. = Message passing on the H-tree

Xl{: (u) if uis aleaf node

= AGG: (W, (0 b) [ w €A@Y witn O
j \ 0 otherwise

Aggregation function Neighbors of u in H-tree



Approximation Results

Theorem: For any (smooth) graph compatible function
f(X) =) fc(xc)
C

and an € > 0, there exists a Neural Tree model ¢(X) with N weights/parameters such that

a. |[f — gl <€
b. N =0 (n- (tW(G)/e)C'tW(G))

!

num. nodes in treewidth of the
the graph tree-decomposition used



Approximation Results

— |-Lipschitz
Theorem: For any (smooth) graph Wction continuous

F(X) =) bc(xc)
C

and an € > 0, there exists a Neural Tree model ¢(X) with N weights/parameters such that

a. ||f — glleo < e
b. N =0 (n- (tW(G)/e)C'tW(G))

!

num. nodes in treewidth of the
the graph tree-decomposition used




The Computational Complexity of
Probabilistic Inference Using Bayesian
Belief Networks

Remarks

- Parameter complexity of Neural Tree
- Linearly in graph size

Gregory F. Cooper
Medical Computer Science Group,

Knowledge Systems Laboratory, Stanford University,
Stanford, CA 94305-5479, USA

- Exponentially in graph treewidth

- Complexity of exact inference on

graphical models

- NP-hard
- Exponential in graph treewidth

ABSTRACT .______________________________________________________________________________________________________________|

Bayesian belief networks provid
cies among a set of variables. F
networks as a knowledge repre
previously for efficient probabil
classes of belief networks, howe
show that probabilistic inferenc
an exact algorithm can be devel
belief networks. This result su
general, efficient probabilistic i
average-case, and approximatio

Complexity of Inference in Graphical Models

1. Intr

The graphical represent
been the subject of consi

Venkat Chandrasekaran

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

It is well-known that inference in graphi-
cal models is hard in the worst case, but
tractable for models with bounded treewidth.
We ask whether treewidth is the only struc-
tural criterion of the underlying graph that
enables tractable inference. In other words.
is there some class of structures with un-
bounded treewidth in which inference is
tractable? Subject to a combinatorial hy-
pothesis due to Robertson et al. (1994).
we show that low treewidth is indeed the
only structural restriction that can ensure
tractability. Thus, even for the “best case”
graph structure, there is no inference al-
gorithm with complexity polynomial in the

Nathan Srebro, Prahladh Harsha
Toyota Technological Institute - Chicago
Chicago, IL 60637

It is well-known that inference is NP-hard if no as-
sumptions are made about the structure of the un-
derlying graphical model (Cooper, 1990). and remains
NP-hard even to approximate (Roth. 1996) as-
suming P # NP, for any algorithm there are some
structures in which (approximate) inference takes time
super-polynomial in the size of the structure. However,
inference in specific structures can still be tractable.
For models in which the underlying graph has low
treewidth, the junction-tree method provides an ef-
fective inference procedure that has complexity poly-
nomial in the size of the graph, though exponential in
the treewidth.

The notion of treewidth (Robertson and Seyvmour
1983: 1986) has led to several results in graph the-
ory (Robertson et al., 1994) and to practical algo-
rithms for a large class of NP-hard problems (Freuder.




Experiments

. 3D Scene Graphs Citation Networks
P (large treewidth graphs)

_: o o0 oy

’ C Ita t 10N N etWO r kS PubMed CiteSeer Cora
Nodes 19,717 3,327 2,708 |
Edges 44,338 4732 5,429 CiteSeer graph
Classes 3 6 7

bedroom

3D Scene Graphs
(smaller graphs with low treewidth)



3D Scene Graphs

Stanford 3D Scene Graph dataset

.+ 482 rooms with 15 categories

. 2338 objects with 35 categories

V] 6 Oct 2019

3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera

Iro Armeni' Zhi-Yang He! JunYoung Gwak!
Martin Fischer' Jitendra Malik®

Amir R. Zamir!+?

Silvio Savarese!

! Stanford University  ? University of California, Berkeley

http://3dscenegraph.stanford.edu

Abstract

A comprehensive semantic understanding of a scene
is important for many applications - but in what space
should diverse semantic information (e.g., objects, scene
categories, material types, texture, etc.) be grounded and
what should be its structure? Aspiring to have one unified

FOV:75

madality: RGB

pase: (38,42 72 0, -10,55)
resalution: 1023x1029

Cameras




3D Scene Graphs

Stanford 3D Scene Graph dataset

.+ 482 rooms with 15 categories
. 2338 objects with 35 categories

2019

3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera

Iro Armeni' Zhi-Yang He! JunYoung Gwak' Amir R. Zamir'
Martin Fischer! Jitendra Malik? Silvio Savarese'

! Stanford University  ? University of California, Berkeley

http://3dscenegraph.stanford.edu

Abstract - A




3D Scene Graphs

Stanford 3D Scene Graph dataset

.+ 482 rooms with 15 categories
. 2338 objects with 35 categories

We construct 3D Scene Graph by
. Connecting nearby objects

2019
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3D Scene Graphs

Stanford 3D Scene Graph dataset

.+ 482 rooms with 15 categories
. 2338 objects with 35 categories

We construct 3D Scene Graph by
. Connecting nearby objects

INnput feature for each node
. centrold and bounding box
dimension

2019
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Experiments and Results

Neural Tree vs traditional GNN

Compare Neural Tree message passing with GNN message passing, with same

aggregation function

Test Accuracy*®

AGGy Input graph Neural Tree

GCN 40.88 +=2.28% 50.63 £+ 2.25 %
GraphSAGE 59.54 +1.35 % 63.57 £ 1.54 %
GAT 46.56 =2.21 % 62.16 £ 2.03 %
GIN 49.25+1.15% 63.93 £ 1.38 %

*Random train/val/test (70/10/20) split

e Neural Tree always performs
better than traditional GNN

e Always better to do message
passing on H-tree



Experiments and Results

——-GCN
50 | | -F-NT+GCN

Increased training data

- Sharper increase with increasing training
data for Neural Trees

.+ Performance of traditional GNN caps out

Average accuracy (%)

10 20 30 40 50 60 70
Nodes used for training (%)



Experiments and Results

o0 ¢

Average accuracy (%)

Increased training data

- Sharper increase with increasing training
data for Neural Trees

.+ Performance of traditional GNN caps out

404 1 GeN

—-NT+GCN|

2 6 8
Number of iterations, diameter

& ©® & B B B
Frequency

o

Average accuracy (%)

——-GCN
50 r

—+-NT+GCN
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Number of message passing iterations

- Max attained at roughly the ave. diameter

of the

-tree

70



Citation Networks

Does Neural Tree scale?

Bounded treewidth subgraph
sampling + Neural Tree

Technical Presentation

WSDM 20, February 3-7, 2020, Houston, TX, USA

Sampling Subgraphs with Guaranteed Treewidth for Accurate
and Efficient Graphical Inference

Jaemin Yoo U Kang’ Mauro Scanagatta

Seoul National University
Seoul, Republic of Korea

Seoul National University
Seoul, Republic of Korea Trento, Italy

Fondazione Bruno Kessler

jaeminyoo@snu.ackr ukang@snu.ac.kr mscanagatta@fbk.eu

Giorgio Corani
IDSIA
Lugano, Switzerland
giorgio@idsia.ch

ABSTRACT

How can we run graphical inference on large graphs efficiently and
accurately? Many real-world networks are modeled as graphical
models, and graphical inference is fundamental to understand the
properties of those networks. In this work, we propose a novel
approach for fast and accurate inference, which first samples a
small subgraph and then runs inference over the subgraph instead
of the given graph. This is done by the bounded treewidth (BTW)
sampling, our novel algorithm that generates a subgraph with guar-
anteed bounded treewidth while retaining as many edges as pos-
sible. We first analyze the properties of BTW theoretically. Then,
we evaluate our approach on node classification and compare it
with the baseline which is to run loopy belief propagation (LBP)
on the original graph. Our approach can be coupled with various
inference algorithms: it shows higher accuracy up to 13.7% with
the junction tree algorithm, and allows faster inference up to 23.8
times with LBP. We further compare BTW with previous graph
sampling algorithms and show that it gives the best accuracy.

CCS CONCEPTS

Marco Zaffalon
IDSIA
Lugano, Switzerland
zaffalon@idsia.ch
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Classification accuracy

Figure 1: Advantages of BTW with two kinds of inference al-
gorithms. BTW a) gives the best accuracy when the junction
tree (JT) algorithm is used and b) speeds up the inference
without hurting accuracy when LBP is used.




Citation Networks

Tree width bounds k=1and 4

w0
o

Does Neural Tree scale? WL K S .

Bounded treewidth subgraph
sampling + Neural Tree

f

Average accuracy (%)
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CO n C I u S i o n Exact inference on

prob. graphical model

» Graph compatible functions

- Neural Tree architecture @

equivalent

- Approximation Results

Graph compatible

functions

- Scalable Neural Tree

A

approximated w.
finitely many

Graph
invariant/equivariant
functions



Conclusion

» Graph compatible functions
- Neural Tree architecture
- Approximation Results

123 234 345
o 75
Scalable Neural Tree Generate a tree structured
2 4 graph called H-tree y 4
3

13 24

103
A

A O

Input graph with node 1 2
3 2
attributes (colors)

Cenerated tree structured graph

Neural Tree Is message passing on H-tree



Invariant/equivariant

Conclusion

» Graph compatible functions \

* Neural Tree architecture oraph Compatible

functions

- Approximation Results /

Graph treewidth

- Scalable Neural Tree

Parameter complexity
N =0 (n-(tw(Q)/e)cWE)
T 17
num. nodes treewidth approx.
distance




Invariant/equivariant

Conclusion

» Graph compatible functions \

* Neural Tree architecture oraph Compatible

functions

- Approximation Results /

Graph treewidth

- Scalable Neural Tree

Result may be repurposed to other GNNs that extract hierarchical features



Conclusion

» Graph compatible functions
- Neural Tree architecture
- Approximation Results

- Scalable Neural Tree

Bounded treewidth subgraph sampling + Neural Tree



Conclusion

» Graph compatible functions
- Neural Tree architecture
- Approximation Results

- Scalable Neural Tree

Neural Tree is a general architecture

Remains to be applied to graph
classification, link prediction, etc.
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