Dynamic Trace Estimation

Prathamesh Dharangutte, Christopher Musco

New York University

Conference on Neural Information Processing Systems (NeurlPS 2021)

Implicit trace estimation

- A basic problem in linear algebra
Given matrix A € R"*" and access to A via matrix vector products
Av e R", for v e R (implicit access), approximate tr(A) = >7, A;.

Implicit trace estimation

- A basic problem in linear algebra
Given matrix A € R"*" and access to A via matrix vector products
Av e R", for v e R (implicit access), approximate tr(A) = >7, A;.

- Computing Hessian if often impractical but Hessian-vector
product (V2f(x)v) can be efficiently computed using finite
difference method.

Implicit trace estimation

- A basic problem in linear algebra
Given matrix A € R"*" and access to A via matrix vector products
Av e R", for v e R (implicit access), approximate tr(A) = >7, A;.

- Computing Hessian if often impractical but Hessian-vector
product (V2f(x)v) can be efficiently computed using finite
difference method.

S

— stepo
— Step 400

o o 5 5

Hessian Eigenvalue Density (Log Scale)
5

P Y
5 5 8
—
L
——
L
=
= —
==

S

Figure 1: Ghorbani et al. [2019] analyze spectrum of Hessian for Resnet-32.

Implicit trace estimation

- For matrix functions A = f(B), we can leverage iterative methods
to approximate Av = f(B)v. (e.g. A = B~"/exp(B)/ log(B)).
Typically, runtime is O(n?) compared to O(n?) for explicitly
forming A.

Implicit trace estimation

- For matrix functions A = f(B), we can leverage iterative methods
to approximate Av = f(B)v. (e.g. A = B~"/exp(B)/ log(B)).
Typically, runtime is O(n?) compared to O(n?) for explicitly
forming A.

- Measure the computational cost in number of matrix-vector
products required Avy, ..., Avy.

Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

- Approximate tr(A) as hy(A) = 1 37, gTAg; where entries in
g; € R™" are random i.i.d. &1.

Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

- Approximate tr(A) as hy(A) = 1 37, gTAg; where entries in
g; € R™" are random i.i.d. &1.

Elg'Agl =E() giAi+ > Z 904 = > AE[G] = Aj =tr(A)
i= j =1 =

=1 J=

Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

- Approximate tr(A) as hy(A) = 1 37, gTAg; where entries in
g; € R™" are random i.i.d. &1.

=1 J=

Elg’Ag] = E(> gfAi + Z Z 904 = > AE[G] = Aj =tr(A)
i=1 =1 i=1 i=1

- hy(A) approximates tr(A) in expectation.

Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson’s estimator (Avron and Toledo
[2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner
[2020]):

Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson’s estimator (Avron and Toledo
[2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner
[2020]):

+ Variance of hy(A) < 2||A|?

Hutchinson’s estimator (Hutchinson [1990], Girard [1987])

Main takeaways from the Hutchinson’s estimator (Avron and Toledo
[2011], Roosta-Khorasani and Ascher [2015], Cortinovis and Kressner
[2020]):

+ Variance of hy(A) < 2||A|?

- For ¢ = O(*&U}/2)), with high probability, [h.(A) — tr(A)| < €||A|l¢

Dynamic setting

Time step —

Want good approximations ty, ty, ..., t; across all time steps.

Dynamic setting

Time step —

Want good approximations ty, ty, ..., t; across all time steps.

Naively, would require total O(””%SW)) mat-vec products.

Dynamic setting

Time step —

Want good approximations ty, ty, ..., t; across all time steps.
Naively, would require total O(””%SW)) mat-vec products.

A natural question: Can we achieve fligia < O(’”'%SW)) ?

Dynamic setting

Time step —

Want good approximations ty, ty, ..., t; across all time steps.
Naively, would require total O(””%SW)) mat-vec products.
A natural question: Can we achieve fligia < O(’”'%SW)) ?

Our result: Yes and can obtain quadratic improvements under
certain assumptions!

Problem formulation

Problem (Dynamic trace estimation)

Let Ay, ...,Ay, be n x n symmetric matrices satisfying:
1. Aille <7, foralli € [1,m].
2. |Aiz1 = Aillr < o, forallie [1,m—1].

Given implicit matrix-vector multiplication access to each A; in
sequence, the goal is to compute trace approximations ty, ..., tn
for tr(Ay), ..., tr(Ay) such that, foreachie1,....m,

P[‘t,‘ — U(A,’)| > 6] < 0.

Dynamic setting

A2 = A1 + A1

Dynamic setting

A, Aq + Aq

tr(4,) + tr(A,)

tr(4;)

Dynamic setting

n+°

tr(4,) tr(4,) + tr(Aq)

| | |

t, = Reuse Estimate

A,

Dynamic setting

tr(4,) tr(4,) + tr(Aq)

| | |

t, = Reuse Estimate

A,

Observation: If ||Aj||r << ||Ai||r, we should be able to accurately
estimate tr(A;) with a lot less matrix-vector products.

Dynamic setting

tr(4,) tr(4,) + tr(Aq)

| | |

t, = Reuse Estimate

A,

Observation: If ||Aj||r << ||Ai||r, we should be able to accurately
estimate tr(A;) with a lot less matrix-vector products.

Ay = Ay—Aq,

Dynamic setting

tr(4,) tr(4,) + tr(Aq)

| | |

t, = Reuse Estimate

A,

Observation: If ||Aj||r << ||Ai||r, we should be able to accurately
estimate tr(A;) with a lot less matrix-vector products.

A= AQ—A17 tr(Aq) = tr(Az—A1)

Dynamic setting

tr(4,) tr(4,) + tr(Aq)

| | |

t, = Reuse Estimate

A,

Observation: If ||Aj||r << ||Ai||r, we should be able to accurately
estimate tr(A;) with a lot less matrix-vector products.

4
1
Aq = AQ—A17 tr(Aq) = tr(Az—A1) = EZ Q,T(AQ—AW)Q,‘

=1

Dynamic setting

tr(4,) tr(4,) + tr(Aq)

| | |

t, = Reuse Estimate

A,

Observation: If ||Aj||r << ||Ai||r, we should be able to accurately
estimate tr(A;) with a lot less matrix-vector products.

L l
1 1
Aq = AQ—A17 tr(Aq) = tr(Az—A1) = EZ Q,T(AQ—AW)Q,‘ = ZZ g/T(Azg,'—A‘]g,')

=1 =1

DeltaShift

Instead of estimating ti 4 = t; + h(Aip — A))’

"Note: hy is the Hutchinson estimator with ¢ mat-vec products.

DeltaShift

Instead of estimating ti 4 = t; + h(Aip — A))’
Estimate, for 0 < v < 1
DeltasShift : tiy = (1 — ’y)t,' + hg(Ai+1 — (1 — ’y)A,')

"Note: hy is the Hutchinson estimator with ¢ mat-vec products.

DeltaShift

Instead of estimating ti 4 = t; + h(Aip — A))’
Estimate, for 0 < v < 1
DeltasShift : tiy = (1 — ’y)t,' + hg(Ai+1 — (1 — ’y)A,')

- t/'s are still unbiased estimators of the trace.

"Note: hy is the Hutchinson estimator with ¢ mat-vec products.

DeltaShift

Instead of estimating ti 4 = t; + h(Aip — A))’
Estimate, for 0 < v < 1
DeltasShift : tiy = (1 — ’y)t,' + hg(Ai+1 — (1 — ’y)A,')

- t/'s are still unbiased estimators of the trace.

- Multiplying by (1 —) reduces the variance of the leading term.

"Note: hy is the Hutchinson estimator with ¢ mat-vec products.

DeltaShift

Forany e, d,« € (0,1), the DeltaShift algorithm solves Dynamic Trace
Estimation problem with

5 <m_ alog(1/5) |, log(’ a))

€2

€’

total matrix-vector multiplications involving Aq, ..., Apn.

DeltaShift

Forany e, d,« € (0,1), the DeltaShift algorithm solves Dynamic Trace
Estimation problem with

5 <m_ alog(1/5) |, log(’ a))

€? €
total matrix-vector multiplications involving Aq, ..., Apn.

For o = ¢, DeltaShift requires O(M) total matrix-vector products.

Selecting ~

- How do you choose the parameter ~?

Selecting ~

- How do you choose the parameter ~?

- Can estimate near-optimal ~ at each time-step with very little
overhead. Let v; be the variance of estimator at time-step I.

Selecting ~

- How do you choose the parameter ~?

- Can estimate near-optimal ~ at each time-step with very little
overhead. Let v; be the variance of estimator at time-step I.

- Use: For any matrix A, ||A||2 = tr(ATA)

Selecting ~

- How do you choose the parameter ~?

- Can estimate near-optimal ~ at each time-step with very little
overhead. Let v; be the variance of estimator at time-step I.

- Use: For any matrix A, ||A||2 = tr(ATA)

7= min (1=)%+ 1147

Selecting ~

- How do you choose the parameter ~?

- Can estimate near-optimal ~ at each time-step with very little
overhead. Let v; be the variance of estimator at time-step I.

- Use: For any matrix A, ||A||2 = tr(ATA)

7= min (1=)%+ 1147

2hg(A/-TAA}')
EVJ’_1 + 2hz(A};1Aj_1)

Selecting ~

- How do you choose the parameter ~?

- Can estimate near-optimal ~ at each time-step with very little
overhead. Let v; be the variance of estimator at time-step I.

- Use: For any matrix A, ||A||2 = tr(ATA)

7= min (1=)%+ 1147

i 2ho(AT_A))
EVJ’_1 + 2hz(A};1Aj_1)

- Note: We can reuse the same matrix-vector products used by
trace estimation.

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the
(¢,6) bounds with & 1/5) matrix-vector products.

1

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the
(e,0) bounds with M matrix-vector products.

For stronger assumptions (in form of nuclear norm) on sequence of
matrices:

DeltaShift++ : tig = - hf (A1) + (1 =) - (ti + h T (A — A))

1

DeltaShift++

For a PSD matrix, recent algorithm by Meyer et al. [2021] obtains the
(e,0) bounds with M matrix-vector products.

For stronger assumptions (in form of nuclear norm) on sequence of
matrices:

DeltaShift++ : tig = - hf (A1) + (1 =) - (ti + h T (A — A))

For ||Aill« < 1and ||Aix — Ajll« < « for all i, DeltaShift++ solves
dynamic trace estimation problem with

0 (m) a/5 T \/ﬁ)
€ €

total matrix-vector products with Ay, A;, ..., Ap.

1

DeltaShift++

We can estimate near-optimal ~ for DeltaShift++ as well!

Let Ky = ||A — Ak”%

8Ka,
)

*

[7°8Ky,
o =min|

+ (1 =)V +

DeltaShift++

We can estimate near-optimal ~ for DeltaShift++ as well!

Let Ky = ||A — Ak”%

2
* . Y 8Ka) 8Ka
= min | =+ (1= 7)o +)
SKAJ + 4V

- 8KA/ + ng_q + BKA,

DeltaShift++

We can estimate near-optimal ~ for DeltaShift++ as well!

Let Ky = ||A — Ak”%

2
* . Y 8Ka) 8Ka
= min | =+ (1= 7)o +)
SKAJ + 4V

- 8KA/ + ng_q + BKA,

Similar to DeltaShift, we can reuse matrix-vector products from trace
estimation!

Empirical results

For the dynamic trace problem, we compare using the same number
of total matrix-products for

- Hutchinson’s estimator at each time step
- Estimate tr(A;) at each time step and add to tr(A;) (NoRestart)
- DeltaShift

Empirical results

Average error +0.250 for 100 trials Average error £0.250 for 50 trials

0.03 1 — Hutchinson — Hutchinson
—— NoRestart —— NoRestart

DeltaShift DeltaShift

0.03

0.02

0.01

0.00

0 20 40 60 80 100 0 20 40 60 80 100
Time step (i) Time step (i)

(a) Synthetic data with total matrix- (b) Graph data with total matrix-vector
vector products= 8 % 103 products= 10*

14

Empirical results

- For estimating spectral density, trace of polynomials of the
Hessian is used.

Empirical results

- For estimating spectral density, trace of polynomials of the
Hessian is used.

The three term recurrence relation for Chebyshev polynomials is:

To(H) =1, Ti(H)=H, Top(H) = 2HTs(H) — To_1(H).

Empirical results

Table 1: Average error for trace of polynomials of Hessian with learning rate
0.001 and total matrix-vector products = 2000

HUTCHINSON ~ NORESTART ~ DELTASHIFT

Ti(H) 25602 3.76-02 1.7€-02
T,(H) 12606 1.76-06 8.0E-07
Ts(H) 4.0E-02 4.1€-02 3.16-02
TJ(H) 15606 1.76-06 1.0e-06
Ts(H) 21602 436-02 1.96-02

16

- Current choice of ~ is a greedy heuristic, but works well
empirically. Can we do better?

- Current choice of ~ is a greedy heuristic, but works well
empirically. Can we do better?

- Can we do better when A matrices have additional structure?
Partial progress in form of DeltaShift++.

Thank you!

