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Online RL and Offline RL
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* Offline RL focus on learning effective policies with static dataset
* Policy is trained without any deployment
e Offline RL methods are totally data-driven RL

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20



Motivation

* Challenges in offline reinforcement learning (RL)
* Learn a value function offline cause serious extrapolation errors and instable
* Directly imitate from the dataset lead to a mediocre behavior but stable

* What if we try stable imitation but prevent mediocre?
* What is the problem that leads to the mediocre behavior?



Quantity-quality dilemma on mixed dataset

* Direct imitation (behavior cloning, BC) requires both quantity and
qguality of the demonstration data
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* All lead to mediocre behaviors top 10%, 25%, 50%, and 100% trajectories of the dataset.



Possible Solution: an empirical observation

* Agent can imitate a neighboring policy with much fewer samples

e BC with different initialization:

* Online-trained policy checkpoints at different |
training iterations as the initiated policy to £ 25001
train an BC agent

e BC from random tends to fail with a small
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as the similarities between the demonstrated
policy and the initialized imitating policy
increase



Theoretical Explaination

° Th ree bo un d te rms: Theorem 1 (Performance bound of BC). Let II be the set of all deterministic polzcy and |I1| = |A|13.
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* initialization gap: distance between the state marginal distribution of the initial
policy and behavior policy out of the dataset

* Additional second term: hard to analyze from theory, we estimate the empirical
discrepancy outside the dataset



Theoretical Explaination (cont.)

* Additional second term: we estimate the empirical ey —e— 1 Trajectory
discrepancy outside the dataset (see details in the paper) - ., il i
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Intuitively, this is because of the poor generalization on (¢) Empirical discrepancy.
unseen states, and the error can be further reduced
with a larger dataset.



Insight for the solution

* Brief conclusion:

* The asymptotic performance of BC is highly related to the discrepancy
between the initialized policy and the demonstrated policy

* A close-to-demonstration policy can easily imitate the demonstrated policy
with fewer samples

* the distance between the initialized policy and the demonstrated policy is
far, then successfully mimicking the policy will require much more samples

* Key insight:
* Adaptively imitating the close policies with a small number of samples and
finally terminates with the optimal behavior policy of the dataset



More formal insight from online RL

* Online RL as imitating optimal policies
* Objective: obtaining the most accumulated rewards
maximize E. . |[R(7)]

* Under the principle of maximum entropy, finding the optimal policy through
RL is equivalent to imitating the optimal policy

P*(1) < exp (R(T)) mlmmlzeDKL( (7)) || P*(1))

* Thus, at each training iteration, the new policy is obtained through updating
follows the direction of minimizing the KL divergence (a stage of curriculum)

VR U v/ D r(Pr(7)||[P (7))



Curriculum offline imitation learning

e Offline RL as adaptive imitation

* At every training stage, the agent updates its policy by adaptively selecting
trajectories from the given dataset as the imitating target (a stage of curriculum)
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Figure 3: Comparison between online off-policy training and curriculum offline imitation learning.



Practical solutions for the first constraint

* Adaptive experience picking by neighboring policy assessment

Observation 1. Under the assumption that each trajectory 7 in the dataset D is collected by an
unknown deterministic behavior policy T with an exploration ratio [3. The requirement of the KL
divergence constraint Ez [Dgy (7(+|s)||7(+|s))] < € suffices to finding a trajectory that at least 1 — 3
state-action pairs are sampled by the current policy ™ with a probability of more than €. such that
€. > 1/expe, ie.:

Il:f’(s,a)enr [H(ﬂ-(a|5) > Gc)] > 1 — /6 ) (8)

* Therefore, to find whether a trajectory is sampled by a neighboring policy, we
calculate the probability of sampling the action at each state by the current

policy in the trajectory for every timestep {m(ay|sg),":, T(ay|sy)}, where h is
the horizon of the trajectory.

* We set f = 0.05 and then we find N nearest policies that matches (8) instead
of choosing an €...



Practical solutions for the second constraint

* Target: refrain the performance from getting worse by imitating to a
poorer target than the current level of the imitating policy

* Practical way: adopt a return filtering mechanism that filtrates the
useless, poor-behaved trajectories.

 initialize the return filter V with O

* update the value at each curriculum by moving average the return of the
selected trajectories

* For example, choose {t}} from dataset at iteration k

Vi = (1 — Of) Vi1 +a- min{R(T)}?f’



Overall algorithm

Algorithm 1 Curriculum Offline Imitation Learning (COIL)

Require: Offline dataset D, number of trajectories picked at each curriculum N, moving window of
the return filter o, number of training iteration L, batch size B, number of pre-train times 7’, and
the learning rate 7.

Initialize policy 7 with random parameter 6.
Initialize the return filter V' = 0.
if D is collected by a single policy then
Do pre-training for 7" times using BC.
end if
while D # () do
for all ; € Ddo
Calculate 7,(m) = {m(ag|sp), w(aj[sy). -, m(aj|s},)}-
Sort 7;(m) into {m(ay|s,), w(a}|sy), -+ ,m(a}|s})} in an ascending order, such that
m(a;[8) < w(@; q18514), JE 0,k —1]
Choose s(7;) = m(a ), [5] 51, ) as the criterion of 7.
end for
Select N = min{ N, |D|} trajectories {7}4" with the highest s(7) as a new curriculum.
Initialize a new replay buffer B with {7} .
D = D\{7}}.
forn=1— L x Ndo
Draw a random batch {(s, a) } ¥ from B.
Update my using behavior cloning

B
0« 60—nVy Z [—logme(aj|s;)]
71=1
end for
Update the return filter V < (1 — )V + o - min{ R(7) } .
Filter Dby D = {7 € D | R(1) > V}.
end while

Simple but effective curriculum
offline imitation learning (COIL)

COIL holds an experience pool that
contains the candidate trajectories
to be selected.

Every training time creates a stage
of the curriculum where the agent
selects appropriate trajectories as
the imitation target from the pool
and learns them via direct BC.

After training, the used experience
will be cleaned from the pool, and
the return filter also filtrates a set of
trajectories.



Experimental design

* Learn from online learning experience

» Offline dataset contains all the training experience of an SAC agent from
scratch to convergence (including exploration actions)

* Benchmark scores
* Compare with state-of-the art offline RL algorithms

* Ablation studies
* How the important hyperparameters can be determined due to the dataset



Learn from online learning experience
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Table 1: Average performances on final datasets, the means and standard deviations are calculated over 5 random
seeds. Behavior shows the average performance of the behavior policy that collects the data.
Dataset Expert (SAC) Behavior BC AWR BAIL CQL COIL (Ours)

hopper-final 3163.3 (44.4) 974.5 1480.4 (800.2)  1609.7 (489.7)  2296.9 (915.9)  501.5(227.5)  2872.5(133.9)
walker2d-final  4866.03 (68.6)  2684.9  2099.6 (2101.3) 3213.8 (1682.9) 4236.2 (1531.1) 2604.3 (1937.6)  4391.3 (697.8)
halfcheetah-final 9739.1(113.6) 71224  6125.6(3910.9) 7600.9 (1153.4) 9745.0 (880.3)  10882.0 (1042.7) 9328.5 (1940.6)




Learn from online learning experience (cont.)
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Compared with naive strategies

e Return-ordered BC (RBC): picks N trajectories with the lowest returns for each curriculum
to perform behavioral cloning, and then removes them from the dataset.

* Buffer-shrinking BC (BBC): begin its training with the entire dataset in the buffer; after a
fixed number of gradient steps, it shrinks the buffer by discarding p% of trajectories with
the lowest returns
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Figure 8: Comparison of training curves between COIL and Return-ordered BC (R BC) and Buffer-shrinking
BC (B BC) on final datasets with the same batch size. Different strategies terminate with different gradient steps.



D4RL benchmarks

 BCis able to approach or outperform the performance of the behavior policy on
the datasets generated from a single policy

e COIL achieves the performance of the optimal behavior policy on most datasets,
and doing so will allow COIL to beat or compete with the state-of-the-art results

Table 2: Average performance on D4RL datasets. Results in columns is our implementation that are tested
among 5 random seeds. The other results are based on numbers reported in D4RL among three random seeds
without standard deviations. Best 1% shows the average return of the top 1% best trajectories, representing the
performance of the optimal behavior policy; Behavior shows the average performance of the dataset.

Dataset Expert (D4RL) Behavior Best1% BC (D4RL) BC (Ours) COIL (Ours) BAIL MOPO SoTA (D4RL)
hopper-random 3234.3 295.1 340.4 299.4 330.1 (3.5) 378.5 (15.2) 318.0 (5.1) 432.6 376.3
hopper-medium 3234.3 1018.1 3076.4 923.5 1690.1 (852.0) 3012.0 (332.2) 1571.5 (900.7) 862.1 2557.3
hopper-medium-replay 3234.3 466.9 1224.8 364.4 853.6 (397.5) 1333.7 (271.1) 808.7 (192.5) 3009.6 1227.3
hopper-medium-expert 3234.3 1846.8 3735.7 3621.2 3527.4 (504.1) 3615.5 (168.9) 24359 (1265.2) 1682.0 3588.5
walker2d-random 4592.3 1.1 25.0 73.0 171.0 (59.3) 320.5 (70.7) 130.8 (87.2) 597.1 336.3
walker2d-medium 4592.3 496.4 3616.8 304.8 1521.9 (1381.3) 2184.5(1279.2) 12424 (1545.7) 643.0 3725.8
walker2d-medium-replay 4592.3 356.6 1593.7 518.6 715.0 (406.5) 1439.9 (347.0) 532.9 (359.0) 1961.1 1227.3
walker2d-medium-expert 4592.3 1059.7 51334 297.0 3488.6 (1815.1) 4012.3 (1463.0) 3633.9 (1839.7) 2526.0 5097.3
halfcheetah-random 12135.0 -302.6 -85.4 -17.9 -124.3 (60.6) -0.3 (0.7) -96.4 (49.7) 3957.2 4114.8
halfcheetah-medium 12135.0 3944.9 4327.7 4196.4 3276.4 (1500.7)  4319.6 (243.7) 4277.6 (564.9)  4987.5 5473.8
halfcheetah-medium-replay 12135.0 2298.2 4828.4 4492.1 4035.7 (365.4) 4812.0 (148.7) 3854.8 (966.3)  6700.6 5640.6

halfcheetah-medium-expert 12135.0 8054.4 12765.4 41694 633.2 (2152.9) 10535.6 (3334.9) 9470.3 (4178.9) 7184.7 7750.8




Ablation studies
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Ablation studies (cont.)

10000 -

* Critical hyperparameter: N

* N:the number of chosen trajectory .
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* Two datasets, showing that
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Conclusion

* The experimental and a theoretical analysis for the quantity-quality
dilemma of behavior cloning (BC) motivates us to propose the
curriculum offline imitation learning (COIL) for offline RL

e COIL takes advantage of imitation learning by improving the current
policy with adaptive neighboring policies

* COIL has several good properties and can compete against state-of-
the-art offline RL algorithms

* COIL is simple, effective, stable, and probably practical for offline RL!
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