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Motivation

Over time bigger models are used, as they use
data more efficiently.

What about running fast inference on
non-specialized hardware?

We look at big Transformer models for text
synthesis.
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Figure 1.2 from Language Models are Few-Shot
Learners, Brown et al. 2020

Larger models make increasingly efficient use
of in-context information.



Motivation - Inference with Large Models

Running unbatched text generation on non-specialized hardware (just CPU):
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Decodoing time per token (seconds)

Motivation - Inference with Large Models

Running unbatched text generation on non-specialized hardware (just CPU):
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Reducing Inference Cost: Prior Approaches

Prior approaches to reduce inference time include:

e Model distillation!"
e Model compression/pruning®
e Quantization &

Our work focuses instead on conditional skipping of parameters, like in Mixture of
Expertstl

Kim et al,, 2020, Fastformers: Highly efficient transformer models for natural language understanding

Li et al., 2020, Train big, then compress: Rethinking model size for efficient training and inference of transformers
Shen et al,, 2020, Q-bert: Hessian based ultra low precision quantization of bert

Shazeer et al., 2017, Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
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Are sparse models enough?

We show that sparse model can perform just as well as a dense model
with the same number of parameters.

To achieve this we designed:

e Sparse Feed Forward
e Sparse QKV
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Sparse Feed Forward




Standard
Feed Forward Layer



Standard Feed Forward Layer

FNN(x) =
ReLU(XW, + b )W, + b,

d_model

activation vector
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Standard Feed Forward Layer
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Standard Feed Forward Layer
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Standard Feed Forward Layer
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Sparse Feed Forward



Sparse Feed Forward
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Sparse Feed Forward
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Sparse Feed Forward:
Controller



How to design Controller?
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How to design Controller?
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How to design Controller?
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Results



Sparse FF
doesn't impact

model quality!
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Neg-log-perplexity of sparse models with 800M parameters with

proposed sparsity mechanisms matches baselines.

Model R-1 R-2 R-LSum R-LSent
Terraformer 4540 17.86 41.21 26.33
DANCER RUM 42.70 16.54 38.44 —
BIGBIRD-RoBERTa 41.22 16.43 36.96 —
Pegasus Large (C4) 44.21 16.95 38.83 25.67
DANCER PEGASUS 45.01 17.6 40.56 —
BIGBIRD-Pegasus 46.63 19.02 41.77 —

Our model is also competitive with strong baselines on ArXiv summarization task.
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How to design Controller?

Decoding times of 1 token, 800M params model
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Sparse QKYV Layer
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Sparse QKV Layer - Simple Variant

attention
mechanism
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Sparse QKV Layer - Simple Variant

dense [
Our sparse variant; baseline e« attention
_ QKV dense mechanism
e has order of magnitude less m v
parameters: 1)
1.5
down to even O(drriodel ) sparse QKV: v
instead of O(d__.,%) mult mult K| attention
e can express any \-_V mechanism
permutation!

We increase d., to keep #params
in the model

e Dbasically moving params
from QKV layer to FF!
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Sparse QKV Layer - Convolution Variant

We can join this permutation layer
with convolution in order to get
better speed at no cost in model
quality.

Please refer to our paper for
details.
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Decodoing time per token (seconds)

Sparse QKV - Inference Time Improvement
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Enabling gains for Long
seguences

\
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Integration with prior approaches

To enable decoding on long sequences we've added to our models:

o reversibility!
e |SH attention!”
e recurrence in the form of SRUX

The project and code is open-source.

[1] Kitaev et al., 2020, Reformer: the efficient Transformer
[2] Lei et al,, 2017, Training rns as fast as cnns
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Future Work
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Future Work

We have shown sparse models perform as well as dense models with same # of
params with an order of magnitude speedup in decoding.

e Enable gains for Batched inference
e Use Sparse FF layer to improve training time
e Enable gains for other domains, for e.g. vision transformers
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