
NeurIPS 2021

Authors: Sebastian Jaszczur, Aakanksha Chowdhery,
 Afroz Mohiuddin, Łukasz Kaiser, Wojciech Gajewski,
 Henryk Michalewski, Jonni Kanerva

Sparse is Enough in
Scaling Transformers

1

01

Agenda
02

03

04

05

Introduction

Sparse Feed Forward

Sparse QKV Layer

Enabling gains for Long sequences

Future Possibilities

2

Introduction

01

3

Motivation

Figure 1.2 from Language Models are Few-Shot
Learners, Brown et al. 2020

Larger models make increasingly efficient use
of in-context information.

Over time bigger models are used, as they use
data more efficiently.

What about running fast inference on
non-specialized hardware?

We look at big Transformer models for text
synthesis.

4

Motivation - Inference with Large Models

Running unbatched text generation on non-specialized hardware (just CPU):

5

~4 seconds per sentence ~90 seconds per sentence

Motivation - Inference with Large Models

Running unbatched text generation on non-specialized hardware (just CPU):

6

2.62x
speed-up! 20x

speed-up!

~4 seconds per sentence

to ~1.5 seconds
~90 seconds per sentence

to ~4.5 seconds!

Reducing Inference Cost: Prior Approaches

7

Prior approaches to reduce inference time include:

● Model distillation[1]

● Model compression/pruning[2]

● Quantization [3]

Our work focuses instead on conditional skipping of parameters, like in Mixture of
Experts[4].

[1] Kim et al., 2020, Fastformers: Highly efficient transformer models for natural language understanding
[2] Li et al., 2020, Train big, then compress: Rethinking model size for efficient training and inference of transformers
[3] Shen et al., 2020, Q-bert: Hessian based ultra low precision quantization of bert
[4] Shazeer et al., 2017, Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.

Are sparse models enough?

8

We show that sparse model can perform just as well as a dense model
with the same number of parameters.

To achieve this we designed:

● Sparse Feed Forward
● Sparse QKV

Sparse Feed Forward

02

9

Standard
Feed Forward Layer

10

11

activation vector

d_model

Standard Feed Forward Layer

FNN(x) =
ReLU(xW

1
 + b

1
)W

2
 + b

2

12

activation vector

mat
muld_model

d_
m

od
el

d_ff

Standard Feed Forward Layer

FNN(x) =
ReLU(xW

1
 + b

1
)W

2
 + b

2

13

activation vector

mat
muld_model

d_
m

od
el

d_ff

ReLU

Standard Feed Forward Layer

FNN(x) =
ReLU(xW

1
 + b

1
)W

2
 + b

2

14

activation vector

mat
mul

mat
mul

feed-forward output

d_model
d_

m
od

el

d_ff

d_
ff

d_model

FNN(x) =
ReLU(xW

1
 + b

1
)W

2
 + b

2

ReLU

Standard Feed Forward Layer

Sparse Feed Forward

15

16

activation vector

mat
mul

mat
mul

feed-forward output

d_model
d_

m
od

el

d_ff

d_
ff

d_model

Sparse Feed Forward

0 0 1 0 0 0 0 1

controller's output
multiply
+ ReLU

17

0 0 0 0 0 0

activation vector

mat
mul

mat
mul

feed-forward output

d_model
d_

m
od

el

d_ff

d_
ff

d_model

0 0 1 0 0 0 0 1

controller's output
multiply
+ ReLU

Sparse Feed Forward

Sparse Feed Forward:
Controller

18

How to design Controller?

19

How to design Controller?

20

How to design Controller?

21

Results

22

Sparse FF

doesn't impact

model quality!

23

Neg-log-perplexity of sparse models with 800M parameters with

proposed sparsity mechanisms matches baselines.

Our model is also competitive with strong baselines on ArXiv summarization task.

How to design Controller?

1.72x
speed-up!

2.31x
speed-up!

24

~4 seconds per sentence

to ~2.3 seconds
~90 seconds per sentence

to ~40 seconds!

Sparse QKV Layer

03

25

Sparse QKV Layer - Simple Variant

26

Our sparse variant:

● has order of magnitude less
parameters:
down to even O(dmodel

1.5)
instead of O(dmodel

2)
● can express any

permutation!

Sparse QKV Layer - Simple Variant

27

Our sparse variant:

● has order of magnitude less
parameters:
down to even O(dmodel

1.5)
instead of O(dmodel

2)
● can express any

permutation!

We increase dff to keep #params
in the model

● basically moving params
from QKV layer to FF!

Sparse QKV Layer - Convolution Variant

28

We can join this permutation layer
with convolution in order to get
better speed at no cost in model
quality.

Please refer to our paper for
details.

Sparse QKV - Inference Time Improvement

29

2.62x
speed-up! 20x

speed-up!

~4 seconds per sentence

to ~1.5 seconds
~90 seconds per sentence

to ~4.5 seconds!

Enabling gains for Long
sequences

04

30

Integration with prior approaches

31

To enable decoding on long sequences we've added to our models:

● reversibility[1]

● LSH attention[1]

● recurrence in the form of SRU[2]

The project and code is open-source.

[1] Kitaev et al., 2020, Reformer: the efficient Transformer
[2] Lei et al., 2017, Training rnns as fast as cnns

Future Work

05

32

Future Work

33

We have shown sparse models perform as well as dense models with same # of
params with an order of magnitude speedup in decoding.

● Enable gains for Batched inference
● Use Sparse FF layer to improve training time
● Enable gains for other domains, for e.g. vision transformers

NeurIPS 2021

Authors: Sebastian Jaszczur, Aakanksha Chowdhery,
 Afroz Mohiuddin, Łukasz Kaiser, Wojciech Gajewski,
 Henryk Michalewski, Jonni Kanerva

Thank you!

34

