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Overview

 Existing Study on GNN Pre-training
e Conditions on transferable GNNs

* Proposed transferable framework

* Input space of GNN
* Ego-graph Information Maximization objective

* Experiments

* Model analysis



Existing Study on GNN Pre-training
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Pre-Training Graph Neural Networks for Generic Structural Feature Extraction



A transfer learning perspective on GNNSs
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Graph Similarity as an indicator

* WL-test use rooted subtree to distinguish different graphs.

-
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Graph Rooted subtree GNN aggregation

Can we use rooted subtree (ego-
graph) to measure the similarity
between graphs ?
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Ego-graph distribution difference as indicator
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A natural view of graph neural network is a function F over graph(ego-graph) and node features.
Hence, transferability is measured upon domain (feature) discrepancy.



Definition of structural information

Definition 3.1 (K-hop ego-graph). We call a graph g; = {V (g:), E(g;) } a k-hop ego-graph centered
at node v; if it has a k-layer centroid expansion [4] such that the greatest distance between v; and
any other nodes in the ego-graph is k, i.e. Yv; € V(g:), |d(vi,v;)| < k, where d(vi,v;) is the graph
distance between v; and v;.

Definition 3.2 (Structural information). Let G be a topological space of sub-graphs, we view a
graph G as samples of k-hop ego-graphs {g;}"_, drawn i.i.d. from G with probability u, i.e.,
Gi ) pw Vi = 1,--- ,n. The structural information of G is then defined to be the set of k-hop
ego-graph of {g;}"_, and their empirical distribution.



Design of transferable learning objective

» Motivation, if self-supervised model approximates the ego-graph
distribution of the source graph. The inference error on target graph
&; therefore, captures the structural difference if & is small.

» We further use empirical loss different Al between source and target
graph to evaluate the potential of such transfer.



Ego-graph Information Maximization (EGI)

* To capture the joint distribution of structural information and node
features, an idea GNN maximize the mutual information between
structural information {g;, x;} and its output W. Such that,

PG, 0) = Ep [—sp (= Tp,w(9i, U(9i, %:)))] — Epyy 5P (Tp,w (9:, ¥ (95, 77)))]

 Discriminator D is asked to distinguish the samples from joint
distribution and product of two marginal distributions.



EGlI Model Optimization
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Transferability of EGI

Theorem A.2. Let G, = {(9;, %)}, and Gy = {(g9:, %)} 17—, be two graphs and node features are structure-respecting
withx; = f(Lg,),zi = f(Lg,, ) for some function f : RIV (i X1V (o0 — R®. Consider GCN Vg with k layers and a 1-hop
polynomial filter ¢,the empirical performance difference of Vg with Lgg, satisfies

|£EGI(G ) 'CEGI(Gb)l < O (nm Z Z ]\/[ + C)‘rnax(L Lgi/) + Cv')‘max(igi - Zg,/))]) ) (1)

1=1 /=1

where M is dependant on ¥V, D, node features, and the largest eigenvalue of L, and Z C' is a constant dependant

on the encoder, while C'is a constant dependant on the decoder. With a slzght abuse of notatlon we denote )\maX(A) =
Amax (ATA)l/ 2. Note that, in the main paper, we have C := M + CApax(Ly, g, )» and Ap(Ga, Gp) 1= C’)\max(L

Ly,).

* The above theorem states the empirical risk difference on source and

target graph are bounded by the Laplacian difference on in-degree and out-
degree adjacency matrices.

* Specifically, the EGI bound term Ap (G, Gp,) describes the transferability of
the EGI objective.



Application of EGI

e Usage of EGI

* Have a series of similar large graph on different task, train EGl embedding on
any of the graph and get transferable embedding easily.

* Usage of EGI gap term Ay (G, Gp)

* point-wise pre-judge: compute the term between source and target graph to
assess the potential of positive transfer ( < 1.0 in practice)

* pair-wise pre-selection: when multiple source graphs are available G, GZ, G
select most suitable source graph G, with the smallest EGl gap Ap



Experiments

* Synthetic Experiment

* Limit the power of rooted subtree by number of hop and still try to find
structural equivalent nodes

e Unsupervised Transfer on node classification

* Train self-supervised encoder on source graph. Obtain node embeddings on
target graph without fine-tuning.

* Few-shot fine-tuning on relation classification
 Jointly train the encoder and task-specific loss



Synthetic experiments

Synthetic task: finding structural equivalent nodes

(a) Forest-fire graph example

(b) Barabasi-albert graph example

transferable features

non-transferable feature

structural difference

Method FF | B-F | 6(acc) | F-F | B-F | é(acc.) | Ap(EF) | Ap(B,F)
GIN (untrained) | 0.572 | 0.572 | / | 0.358 | 0.358 /
VGAE (GIN) | 0.498 | 0.432 | +0.066 | 0.240 | 0239 | 0.001
DGI (GIN) 0.578 | 0.591 | -0.013 | 0.394 | 0.213 | +0.181 | 0.752 0.883
EGI (GIN) 0.710 | 0.616 | +0.094 | 0.376 | 0.346 | +0.03




Real Data Experiments

Task: Unsupervised transferring on role identification
Dataset: Airport (USA, Europe, Brazil), role — level of popularity

Table 2: Results of role identification with direct-transfering on the Airport dataset. The performance reported (%) are the average over
100 runs. The scores marked with ** passed t-test with p < 0.01 over the second best results.

Europe (source) USA (target) Brazil (target)
Method . : .
node degree | uniform | node degree | uniform | node degree ‘ uniform

features 52.81 20.59 55.67 20.22 67.11 19.63
GIN (untrained) 55.75 53.88 61.56 58.32 70.04 70.37
GVAE (Kipf & Welling, 2016) 53.90 21.12 55.51 22.39 66.33 17.70
DGI (Velickovic et al., 2019) 57.75 22.13 54.90 21.76 67.93 18.78
MaskGNN (Hu et al., 2019a) 56.37 55.53 60.82 54.64 66.71 74.54
ContextPredGNN (Hu et al., 2019a) 52.69 49.95 50.38 54.75 62.11 70.66
Structural Pre-train (Hu et al., 2019b) 56.00 53.83 62.17 57.49 68.78 72.41
EGI 59.15** 54.98 64.55** 57.40 73.15** 70.00

Common self-supervised algorithms such as DGI and GVAE fails to positive transfer.



Real Data Experiments

Task: Unsupervised transferring + fine-tuning on Link Prediction
Dataset: knowledge graph (YAGO)
Post-fine-tuning: use transferred encoder W

Joint-fine-tuning: jointly optimize the EGI and task objective on target

post-fine-tuning joint-fine-tuning

Method AUROC | MRR | AUROC | MRR

No pre-train 0.6866 | 0.5962 N.A. N.A
GVAE [24] 0.7009 | 0.6009 | 0.6786 0.5676
DGI [45] 0.6885 | 0.5861 | 0.6880 0.5366
Mask-GIN [19] 0.7041 | 0.6242 | 0.6720 0.5603
ContextPred-GIN [19] | 0.6882 | 0.6589 | 0.5293 0.3367
EGI 0.7389** | 0.6695 | 0.7870** | 0.7289**




Model Analysis

* Efficient Computation of term Aj

 Enumerating every single pair of ego-graph between source and target graph
can easily blow up the memory (N by M pairs — N,M is the number of nodes).

* |n practice, we can estimate it by uniformly down sample such pairs

Sampling frequency Europe-USA Europe-Brazil

100 pairs 0.872+0.039 0.854:0.042
1000 pairs 0.859+0.012 0.848x0.007
Full 0.869 0.851

 Relation to the depth of rooted subtree (ego-graph)

Europe (source) USA (target) Brazil (target)

Method acc acc, Ap acc, Ap
EGI (k=1) 58.25 60.08, 0.385 60.74, 0.335
EGI (k=2) 59.15 64.55, 0.869 73.15, 0.851

EGI (k=3) 57.63 64.12,0.912 72.22,0.909



Thanks and Q&A

* More results are available: https://arxiv.org/abs/2009.05204
* Questions and discussions: qiz3@Illinois.edu
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