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Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Asymptotically Efficient Higher-Order Transformers Enck→l,φ

 •  Reduce asymptotic complexity of Enck→l
    + Lightweight sublayers
    + Sparse input and output hypergraphs
    + Kernelized attention
 •  Resulting architecture has linear complexity O(m) to number of input hyperedges m,
     same to all message-passing GNNs; but still theoretically more expressive

Transformers (Enc1→1) Generalize DeepSets (L1→1)
 •  DeepSet, or first-order linear layer (L1→1), is feedforward (μ1) + static sum-pool (μ2)
 •  To model adaptive interactions of set elements, we use self-attention mechanism
 •  This procedurally improves a DeepSet layer into a Transformer encoder layer (Enc1→1)

1. Maron et al., Invariant and Equivariant Graph Networks, 2019.
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Higher-Order Transformers Enck→l

 •  Extend the first-order case (set) to higher orders (graphs and hypergraphs)
 •  Combine higher-order self-attention Attnk→l and residual equivariant MLPl→l

Higher-Order Self-Attention Attnk→l

 •  Generalize each basis tensor in Lk→l with higher-order attention coefficient tensor

Set-to-Graph Prediction (1→2): Delaunay, Jets
 •  Mixed-order Transformers, both softmax and kernel, outperform all baselines;
     kernelized attention is often competitive or sometimes better than softmax
 •  Compared to equivariant MLP, the results indicate that attention mechanism
     is helpful in modeling graphs with varying numbers of nodes

Large-Scale Graph Regression (2→2, 2→0): PCQM4M-LSC
 •  Higher-order Transformer outperforms all baselines by a large margin,
     demonstrating benefits in large-scale settings
 •  Higher-order attention is potentially better in handling long-range interactions
     than the current practice of augmenting MPNNs with a virtual node
 •  Heuristic graph embeddings (e.g., Laplacian) are insufficient to utilize features
     from edges, while second-order Transformers can use all edge information

We present a generalization of Transformers to sets, graphs, and hypergraphs,
and reduce its computational cost to linear to input size.
 •  Current graph neural nets are local message-passing (MPNNs), and do not scale well
 •  Equivariant MLPs are theoretically powerful and flexible, but less practical

Higher-Order Transformers offer a working solution
 •  Equivariance theory + self-attention → Transformers for any-order graphs
 •  Powerful operations, involving both local and global dependency over input elements
 •  Flexible translation between different-order graphs (e.g., set-to-(hyper)graph)
 •  Theoretically and empirically stronger than MPNNs, even with same linear complexity

Masked inner sum with
binary basis tensor Bμ

Outer sum over
equivalence classes μ

Background: Permutation Equivariant Graph Learning
 •  View sets, graphs, and hypergraphs as permutable tensors; use equivariant layers
     that preserve isomorphism to process them

Background: Equivariant Linear Layers Lk→l: ℝnk×d→ℝnl×d’

 •  Theoretically maximally expressive [1], involving various local and global interactions

 •  Example: First-order equivariant layer L1→1 (DeepSet)

k-Uniform Hyperedge Prediction (1→k): GPS, MovieLens, Drug
 •  Higher-order Transformer generally shows high performance, even without
     introducing task-specific inductive biases as in some baselines
 •  Higher-order self-attention is effective in learning higher-order representations


