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Background

• Offline model-based reinforcement learning.

(RL using environment model and previously collected offline data)

• Typical approach:

1. Estimating model by standard supervised learning.

2. Planning policy using estimated model.

• Issue:

Model estimation without considering covariate shift.

* Training data (offline data) is sampled using data-collecting policy.

* Test data (real future data) is sampled using newly planned policy. 



Key idea

• Importance-weighted model estimation can improve predictive performance 
under covariate shift.
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We can generate simulated 
future data in simulation. 
Estimating this weight is 

ratio estimation in 
supervised learning. This 
weight is easier-to-use. 



Question

Our idea may not seem natural from viewpoint of covariate shift. Is it valid?



Justification

Our idea can be seen evaluating upper bound of policy evaluation error.

𝜂 𝑃𝜃, 𝜋 − 𝜂 𝑃∗, 𝜋 ≤ 𝐵 𝐸 −𝑤 𝑠, 𝑎 ln𝑃𝜃 𝑠′ 𝑠, 𝑎 − const



Justification: derivation

≒

Telescoping Lemma 
[Luo+2019]

Holder inequality

Pinsker inequality
+ Jensen inequality

Definition of minimum 
self-entropy

Policy evaluation error

Importance-weighted loss function



Loss functions

• (Repeat) upper bound of policy evaluation error

𝜂 𝑃𝜃 , 𝜋 − 𝜂 𝑃∗, 𝜋 ≤ 𝐵 𝐸 −𝑤 𝑠, 𝑎 ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 − const

• Policy evaluation: 

𝐿 𝜃 = 𝐸 −𝑤 𝑠, 𝑎 ln 𝑃𝜃 𝑠′ 𝑠, 𝑎

• Policy optimization:

𝐽 𝜃, 𝜋 = 𝜂 𝑃𝜃 , 𝜋 − 𝐵′ 𝐸 −𝑤 𝑠, 𝑎 ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 − const



Algorithm: policy evaluation (full version)

• Loss function:

𝐿 𝜃 = 𝐸 −𝑤𝜃
𝜋 𝑠, 𝑎 ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 ≈ −𝑤𝜃

𝜋 𝑠, 𝑎 ln 𝑃𝜃 𝑠′ 𝑠, 𝑎

• Gradient-based optimization:

∇𝐿 𝜃 ≈ −𝑤𝜃
𝜋 𝑠, 𝑎 ∇ ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 + ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 ∇ ln 𝑑(𝑠)

Extension of LSDG 
[Morimura+2010]

Ratio estimation for 
supervised learning



Algorithm: policy evaluation (simplified version)

• (Repeat) gradient:

∇𝐿 𝜃 ≈ −𝑤𝜃
𝜋 𝑠, 𝑎 ∇ ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 + ln 𝑃𝜃 𝑠′ 𝑠, 𝑎 ∇ ln 𝑑(𝑠)

Estimating ∇ ln𝑑(𝑠) is computationally heavy, because it is the same number of value 
function of forward Bellman equation as the number of parameters.

• Simplified version:

−𝑤𝜃
𝜋 𝑠, 𝑎 ∇ ln𝑃𝜃 𝑠′ 𝑠, 𝑎



Algorithm: policy optimization

• Loss function:

𝐽 𝜃, 𝜋 = 𝜂 𝑃𝜃 , 𝜋 − 𝐵′ 𝐸 −𝑤 𝑠, 𝑎 ln𝑃𝜃 𝑠′ 𝑠, 𝑎 − const

• EM-style optimization of majorization-minimization surrogate of 𝐽 𝜃, 𝜋 :

E-step: modification of weighted model estimation for policy evaluation.

M-step: policy optimization in simulated MDP with penalized reward.

Model expected return Penalty for policy evaluation error



Pendulum swing-up prediction using small NNs

Fig (a) shows real future data  
obtained using optimal policy.

The goal is to predict swing-up.

Fig (b) shows result of standard supervised learning.
Fig (c) shows result of weighted model estimation.

Black markers are simulated future data.
Colored markers are offline data, where coloring indicates importance weighting.

Fig (b) cannot capture swing-up, because small NNs cannot generalize globally.
Fig (c) can capture swing-up, because small NNs can generalize locally around 
swing-up behavior, based on importance weighting.

Fig (b) Fig (c)Fig (a)

×
〇



D4RL MuJoCo benchmark

• Our EM-style algorithm improves performance for walker2d-medium-expert dataset.

Our EM-style algorithm



Limitation

• Full version of our algorithm is derived from theory, but it cannot be applied 
to large-scale problems due to large amount of computation.

• Simplified version of our algorithm is practical, but it has no convergence 
with respect to loss function.



Conclusion

• We discuss model estimation considering covariate shift in offline MBRL.

• Our idea is importance-weighting with distribution ratio of offline data and 
simulated future data.

• Question: our idea may not seem natural. Is it valid?

• Our idea is justified as evaluating upper bound of policy evaluation error.

• We propose EM-style algorithm based on our idea. It improves 
performance in numerical experiments.



Future issues

• Extension to Bayesian MBRL.

• Combining with loss functions in decision-aware model learning approaches.

• Model selection based on importance-weighted loss function.

• Addressing extrapolation.
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