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Theories of embodied
cognition and perception
suggest that humans are

able to represent the world
knowledge in the form of
internal models across
different time scales.

Pezzulo & Cisek, 2016




Motivation

Building internal models across different time scales would allow

[  Faster Learning
[  Efficient Planning

[ Ability to make predictions across different scales

Existing literature considers

[ Single-step model learning which is challenging - accumulates error!
[ Model based RL where models are built over entire state-action space - intractable!

[  Learning & planning with options that apply everywhere - no spatial specialization!



Key Contributions

7 Affordable ?

£ We extend option models to account for affordances.

£ We establish a theoretical understanding of the
trade-offs associated with using options vs. actions jointly
with affordances.

g Empirically demonstrate end-to-end learning of
affordances and partial option models in a function
approximation setting.




Key Concepts
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Temporally Extended Intent 1’

[ Describes the intended result of executing option o in state s

[ The associated intent model is denoted by \l o

I, (s, 7) = Pr(7ls, 0)

[ Intent is satisfied to a degree Cs,o if and only if:

d(Pr(7|s,0), P(7|s,0)) < (s
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Affordances for Temporal Abstractions

7 Consider a set of intents Z—7 = er(DI: —“.

/ Option affordances are defined as a relation \ {
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Theoretical Analysis



Planning Loss

[  Certainty-equivalence (CE) planning loss: act according to the policy that is optimal with respect
to the estimated model.
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Both are evaluated in the frue model M.



Planning l.oss Bound: temporal abstraction
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Jiang et al. 2015 Too big!




Planning l.oss Bound: temporal abstraction + affordances

Trade-0Offs
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Dependence on
Affordances

Intent
Approximation

£ Faster planning across different timescales, though at the cost of potential
approximation bias.



Sample Complexity

[ To build the transition model, transitions are estimated by sampling the simulator, with the number of
calls to this simulator referred to as the sample complexity.

1 Modelling one-time step dynamics would require samples in the order of magnitude of the size of
the state-action space!

(1 Solution: construct temporally abstract partial models

A  Sample complexity of obtaining an £ - estimation of the optimal action-value function given only
access to a generative model.



Sample Complexity: temporal abstraction
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Sample Complexity: temporal abstraction + affordances
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£ The ability to understand abstract action opportunities resulting in improved
sampled efficiency.



Empirical Analysis



The Taxi Domain

Task

.... must pick up

{ "and drop to ..
]

Rewards

4 Correct drop off +20 reward.
4 Wrong drop off -10 reward.
A -1 reward per step.



Pre-specified

Experimental Setup
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When are intents & affordances are most useful?

Affordances improve model
learning even in the absence of
them during planning => useful

partial option model
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(a) Data collection and model learn-
ing with affordances.



When are intents & affordances are most useful?
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(a) Data collection and model learn-

ing with affordances.

Success Rate

planning as the underlying model

Affordances did not impact

is the same.
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(b) Planning with affordances.



When are intents & affordances are most useful?

Affordances informing both
model learning and planning
result in best performance.
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Impact on sample efficiency

Learning a partial option model
requires much fewer samples as
opposed to learning a full model.
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Using affordances during model
learning and planning decreases
planning iterations.




Pre-specified

Experimental Setup - Learned affordances

Option Policies Taxi centric: Go to xy, Drop at x,y, Pickup at x,y
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We can learn affordance sets online!

Affordances Set Size

All option-state pairs are affordable
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The best learned affordance sets are smaller than
what we could come up as heuristics!




The impact of the affordance set size on performance
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Conclusion

We presented notions of intents and affordances that can be used together with options.
A [Theoretically] Modelling temporally extended dynamics for only relevant parts leads to
1 Faster planning across different timescales

[ Improved sampled complexity in learning such models

[ [Empirically] Learning affordances online for model learning and planning results in
[ Improvements in performance in downstream task

[ Drastically reduced state-option space



Future Work

1 Discovery of options as well as intents

[ Study the emergence of new affordances at the boundary of the agent-environment
interaction in the presence of non-stationarity.

[ Relate our work to cognitive science models of intentional options



tl;dr Temporally Abstract Partial Models

Proposed temporally abstract partial options models via the notion of
affordances, with theoretical guarantees and empirical analysis demonstrating
improvement in final performance and sample efficiency.
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