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Figure 1. Behavior categories: frame examples, descriptions, frequency of occurrence (p), and duration mean and variance expressed in
seconds (µ,�). All behaviors refer to the cage resident, main mouse. The probability of other (not shown) is 55.3%.

first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The
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improving results 8% across all behaviors.
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shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
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ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
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extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.
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ces results in a human performance of 91%, and only 66%
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often arbitrary, they are not annotated by experts and they
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99% respectively.
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first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The
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first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The
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first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).
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Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
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neous actions and activities. Filming should be continu-
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havior and agent-object interactions are of particular inter-
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tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The
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while our approach still makes mistakes between real be-
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ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).
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often arbitrary, they are not annotated by experts and they
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first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
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havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The
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extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).
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Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
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seconds (µ,�). All behaviors refer to the cage resident, main mouse. The probability of other (not shown) is 55.3%.

first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The
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first computing spatio-temporal and trajectory features from
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extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.
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set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The

{ features(               ), features(                ), …. }

𝑐, 𝐀𝐝𝐝, 𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐲: constant, arithmetic operations

𝐈𝐓𝐄 𝛼! ≥ 0 𝛼" 𝛼#: If-Then-Else

𝐅𝐒,& 𝑥 : parameterized function that extracts a subset 𝐒 of features 
from a data frame 𝑥 and passes the extracted features through a 
linear function with parameters 𝜃 (for interpretability)

𝐅𝐒,& 𝑥 𝐒 Semantics

PositionAffine 0, 1, 2, 3 mice positions

DistanceAffine 4 mice distance

𝐦𝐚𝐩, 𝐦𝐚𝐩𝐩𝐫𝐞𝐟𝐢𝐱, 𝐟𝐨𝐥𝐝, 𝐒𝐥𝐢𝐝𝐞𝐖𝐢𝐧𝐝𝐨𝐰𝐀𝐯𝐠: standard higher-order combinators to recurse over sequences



Walk Away Sniff

Crim13 Dataset Program Synthesized

Approach intruder Walk away from intruder Circle around intruder Chase intruder
p=3.4%, µ = 1.2,⇥ = 0.5 p=3.3%, µ = 1.6,⇥ = 0.6 p=0.3%, µ = 2.4,⇥ = 2.5 p=1.0%, µ = 0.8,⇥ = 0.3

Attacks intruder Copulation, courts intruder Drink Eat

(p=3.4%, µ = 2.3,⇥ = 17.4 p=4.2%, µ = 3.2,⇥ = 40.5 p=0.3%, µ = 4.0,⇥ = 30.2 p=1.6%, µ = 9.5,⇥ = 104

Clean, grooms itself Human intervenes Sniff any body part of intruder Up Stands in its back legs
p=7.6%, µ = 2.6,⇥ = 25.4 p=1.2%, µ = 3.5,⇥ = 10.5 p=14.4%, µ = 2.7,⇥ = 27.7 p=3.8%, µ = 2.1,⇥ = 12.0

Figure 1. Behavior categories: frame examples, descriptions, frequency of occurrence (p), and duration mean and variance expressed in
seconds (µ,�). All behaviors refer to the cage resident, main mouse. The probability of other (not shown) is 55.3%.

first computing spatio-temporal and trajectory features from
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shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.
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while our approach still makes mistakes between real be-
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they are segmented, they are acted, the choice of actions is
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Figure 1. Behavior categories: frame examples, descriptions, frequency of occurrence (p), and duration mean and variance expressed in
seconds (µ,�). All behaviors refer to the cage resident, main mouse. The probability of other (not shown) is 55.3%.

first computing spatio-temporal and trajectory features from
video, a second level analyzes temporal context using an
extension of Auto-context [35] to video. The temporal con-
text model helps segmenting the video into action ‘bouts’
improving results 8% across all behaviors.

Our method reaches a recognition rate of 61.2% on 13
categories, tested on 133 videos, see Table 3. Figure 2
shows a comparison of our approach with experts agree-
ment on the 12 videos for which we have multiple expert
annotations. On this smaller dataset, expert agreement is
around 70%, while our method’s performance is 62.6%.

However, CRIM13 still represents a serious challenge.
Disagreement between human annotators lies almost en-
tirely on the labeling of other behavior (less important),
while our approach still makes mistakes between real be-
haviors. In fact, removing other from the confusion matri-
ces results in a human performance of 91%, and only 66%
for our approach. When counting other, our approach out-
performs human agreement in 5 of the 12 behaviors (ap-
proach, chase, circle, human, walk away).

2. Related work

Datasets – What makes a good dataset? Behavior is in-

teresting and meaningful when purposeful agents interact
with each other and with objects in a given environment.
The ideal behavior dataset identifies genuine agents acting
freely in a well-defined scenario, and captures all sponta-
neous actions and activities. Filming should be continu-
ous in order to allow a study of the structure of behav-
ior at different scales of temporal resolution. Social be-
havior and agent-object interactions are of particular inter-
est. Current most widely-used datasets for action classifica-
tion, KTH [32], INRIA-XMAS [40], Weizmann [12], UCF
Sports [30], Hollywood2 [25], YouTube [24], Olympic
Sports [14] and UT videos [31] do not meet this standard:
they are segmented, they are acted, the choice of actions is
often arbitrary, they are not annotated by experts and they
include little social behavior. Moreover, KTH and Weiz-
mann datasets may have reached the end of their useful life
with current state of the art classification rates of 94% and
99% respectively.

One of the first approaches to continuous event recog-
nition was proposed by [43], although only a very small
set of continuous video sequences were used. Virat [27] is
the first large continuous-video dataset allowing the study
of behavior in a well-defined meaningful environment. The

Map(
Multiply(
PositionAffine 𝜃!(𝑥'), DistanceAffine 𝜃"(𝑥'))) 𝑥

Doing “sniff” if two mice are close

Position bias

Interpretable Sequence Classification via Program Synthesis

• Synthesize a program in the DSL to classify a sequence of actions made by two 
mice to “sniff” or “no sniff”. 

where

prediction error loss on a sequence 𝑖( w.r.t its category 𝑜(

• Problem Formulation:
𝛼 ∷ = 𝑥 𝑐 𝐀𝐝𝐝 𝛼! 𝛼" 𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝛼! 𝛼" 𝐈𝐓𝐄 𝛼! ≥ 0 𝛼" 𝛼# 𝐅𝐒,& 𝑥 𝐦𝐚𝐩 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑥 |

𝐦𝐚𝐩𝐩𝐫𝐞𝐟𝐢𝐱 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑥 𝐟𝐨𝐥𝐝 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑐 𝑥 𝐒𝐥𝐢𝐝𝐞𝐖𝐢𝐧𝐝𝐨𝐰𝐀𝐯𝐠 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑥

synthesize a program 𝑃



Interpretable Sequence Classification via Program Synthesis

• Define a Context-free DSL Grammar to define a program architecture search space.

𝛼 ∷ = 𝑥 𝑐 𝐀𝐝𝐝 𝛼! 𝛼" 𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐲 𝛼! 𝛼" 𝐈𝐓𝐄 𝛼! ≥ 0 𝛼" 𝛼# 𝐅𝐒,& 𝑥 𝐦𝐚𝐩 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑥 |
𝐦𝐚𝐩𝐩𝐫𝐞𝐟𝐢𝐱 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑥 𝐟𝐨𝐥𝐝 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑐 𝑥 𝐒𝐥𝐢𝐝𝐞𝐖𝐢𝐧𝐝𝐨𝐰𝐀𝐯𝐠 𝐟𝐮𝐧 𝑥!. 𝛼! 𝑥

• Challenge - Discrete and combinatorial search for programmatic classifiers.

Architecture Enumeration is Inefficient!
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Differentiable Program Architecture Synthesis

• Differentiable Program Derivations.
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• Encode the entire search space (up to a depth bound) as a differentiable program 𝑇',& with
architecture weight 𝑤 and the parameters 𝜃 in all programs sharing the search space.

• Program synthesis as optimizing 𝑇',& with respect to the accuracy loss on training examples.
• 𝑤 and 𝜃 learned via bi-level optimization using gradient descent.

However, training is still difficult as 𝑇G,I is exponentially large!

A program derivation graph

• Differentiable Program Semantics.
𝐈𝐓𝐄 𝛼! ≥ 0, 𝛼", 𝛼# 𝑥 = 𝜎 𝛼! 𝑥 ⋅ 𝛼" 𝑥 + 1 − 𝜎 𝛼! 𝑥 ⋅ 𝛼# (𝑥)



Optimizing Differentiable Architecture Search

• 1. Node Sharing.
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Optimizing Differentiable Architecture Search

• 1. Node Sharing.

• Nonterminals in partial architectures of the same node share child nodes.
• For example, the first parameters of Add 𝛼!

!,( and ITE 𝛼!
!,! on node 1 share child node 2.
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Optimizing Differentiable Architecture Search

• 1. Node Sharing.
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• Nonterminals in partial architectures of the same node share child nodes.
• For example, the second parameters of Add 𝛼"

!,( and ITE 𝛼"
!,! on node 1 share child node 3.



Optimizing Differentiable Architecture Search

• 1. Node Sharing.
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• Nonterminals in partial architectures of the same node share child nodes.
• For example, the second parameters of Add 𝛼"

!,( and ITE 𝛼"
!,! on node 1 share child node 3.

• Intuition – only one of the partial architectures on node 1 would be chosen in the final 
derivation.



Optimizing Differentiable Architecture Search

• 1. Node Sharing.

• Nonterminals in partial architectures of the same node share child nodes.
• For example, the second parameters of Add 𝛼"

!,( and ITE 𝛼"
!,! on node 1 share child node 3.

• Intuition – only one of the partial architectures on node 1 would be chosen in the final 
derivation.

• Sharing reduces the width of a program derivation graph 𝑇',&
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Optimizing Differentiable Architecture Search

• 2. Iterative Graph Unfolding.
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• At each iteration, we perform two steps



Optimizing Differentiable Architecture Search

• 2. Iterative Graph Unfolding.

• At each iteration, we perform two steps:
• Unfolding – expand 𝑇',& only 𝑑)-depth deeper with any remaining nonterminals in it

approximated by neural networks (𝑑) = 2).
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Optimizing Differentiable Architecture Search

• 2. Iterative Graph Unfolding.
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• At each iteration, we perform two steps:
• Unfolding – expand 𝑇',& only 𝑑)-depth deeper with any remaining nonterminals in it

approximated by neural networks (𝑑) = 2).
• Top-N preservation – after training an expanded 𝑇',&, on each node retain only the Top-N

architecture derivations for each partial architecture on the node’s parent (N = 2). 
• Top-N ranked by trained architecture weights



Optimizing Differentiable Architecture Search

• 2. Iterative Graph Unfolding.

+×

" " !"#ℎ

×

×

!"#ℎ

"
#!

ℎ!"#

%!"# %!

ℎ!

ℎ$

…

…

0.2 0.34 0.46
0.5 0.17 0.33
0 0 0

*++: -!",$
./0: -!","
123: ∅

567+ *89 :

;

;

Depth 0

Depth 1

Depth 2

Depth 3

0

1

2 3

4 5

*++
-"",$-!",$

./0
-"","-!","-%","

123
-"",!

*++
-"!,$-!!,$

1<7
-"!,"-!!,"

:
∅

567+
-"%,$ -"%,"

*89 :
∅

./0
-"&,"-!&,"-%&,"

1<7
-"&,!-!&,!

*++
-"&,%-!&,%

./0
-"',"-!',"-%',"

1<7
-"',!-!',!

:
∅

=>2?>
-"$,$

Top-2 Sel.
0

∅

Extend

Train "/$
Top-2 Sel.Extend

Train "/$

…

;′

0.5 0.41 ⋯ 0.02
0.6 0.02 ⋯ 0.29

;′

0.55 0.45 0
0.67 0 0.33

…
;

0.3 0.36 ⋯ 0.02 0

1

NN

3 …
…;

2 …
NN

0

1

NN

3

NN

2

0

1

3

4 …
5 6… …

;′
2

0

1

3

4

5 6

;′
2

Search

w. train

0

1

3

4

5 6

2

• At each iteration, we perform two steps:
• Unfolding – expand 𝑇',& only 𝑑)-depth deeper with any remaining nonterminals in it

approximated by neural networks (𝑑) = 2).
• Top-N preservation – after training an expanded 𝑇',&, on each node retain only the Top-N

architecture derivations for each partial architecture on the node’s parent (N = 2). 
• Top-N ranked by trained architecture weights



Optimizing Differentiable Architecture Search

• 2. Iterative Graph Unfolding.

+×

" " !"#ℎ

×

×

!"#ℎ

"
#!

ℎ!"#

%!"# %!

ℎ!

ℎ$

…

…

0.2 0.34 0.46
0.5 0.17 0.33
0 0 0

*++: -!",$
./0: -!","
123: ∅

567+ *89 :

;

;

Depth 0

Depth 1

Depth 2

Depth 3

0

1

2 3

4 5

*++
-"",$-!",$

./0
-"","-!","-%","

123
-"",!

*++
-"!,$-!!,$

1<7
-"!,"-!!,"

:
∅

567+
-"%,$ -"%,"

*89 :
∅

./0
-"&,"-!&,"-%&,"

1<7
-"&,!-!&,!

*++
-"&,%-!&,%

./0
-"',"-!',"-%',"

1<7
-"',!-!',!

:
∅

=>2?>
-"$,$

Top-2 Sel.
0

∅

Extend

Train "/$
Top-2 Sel.Extend

Train "/$

…

;′

0.5 0.41 ⋯ 0.02
0.6 0.02 ⋯ 0.29

;′

0.55 0.45 0
0.67 0 0.33

…
;

0.3 0.36 ⋯ 0.02 0

1

NN

3 …
…;

2 …
NN

0

1

NN

3

NN

2

0

1

3

4 …
5 6… …

;′
2

0

1

3

4

5 6

;′
2

Search

w. train

0

1

3

4

5 6

2

• At each iteration, we perform two steps:
• Unfolding – expand 𝑇',& only 𝑑)-depth deeper with any remaining nonterminals in it

approximated by neural networks (𝑑) = 2).
• Top-N preservation – after training an expanded 𝑇',&, on each node retain only the Top-N

architecture derivations for each partial architecture on the node’s parent (N = 2). 
• Top-N ranked by trained architecture weights

• Iterative unfolding reduces the depth of a training graph considered at each iteration.



Optimizing Architecture Selection

• Upon convergence, select one discrete program from trained 𝑇G,I. 
• Challenge – architecture weights may be inaccurate due to compound nodes.
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Optimizing Architecture Selection

• Upon convergence, select one discrete program from trained 𝑇G,I. 
• Challenge – architecture weights may be inaccurate due to compound nodes.

• Split the top-left compound node in 𝑇',& to separate the architecture search space into disjoint 
partitions and train each partition until convergence.
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• Upon convergence, select one discrete program from trained 𝑇G,I. 
• Challenge – architecture weights may be inaccurate due to compound nodes.

• Split the top-left compound node in 𝑇',& to separate the architecture search space into disjoint 
partitions and train each partition until convergence.

• Maintain all partitions in a priority queue sorted by their quality (e.g., F1-score after convergence) 
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Optimizing Architecture Selection

• Upon convergence, select one discrete program from trained 𝑇G,I. 
• Challenge – architecture weights may be inaccurate due to compound nodes.

• Split the top-left compound node in 𝑇',& to separate the architecture search space into disjoint 
partitions and train each partition until convergence.

• Maintain all partitions in a priority queue sorted by their quality (e.g., F1-score after convergence) 
• Dequeue a partition from the priority queue and further split its top-left compound node.
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Optimizing Architecture Selection

• Upon convergence, select one discrete program from trained 𝑇G,I. 
• Challenge – architecture weights may be inaccurate due to compound nodes.

• Split the top-left compound node in 𝑇',& to separate the architecture search space into disjoint 
partitions and train each partition until convergence.

• Maintain all partitions in a priority queue sorted by their quality (e.g., F1-score after convergence) 
• Dequeue a partition from the priority queue and further split its top-left compound node.

Algorithm terminates when a discrete program is dequeued.



Implementation: dPads

• Implement the program learning algorithm in a tool dPads.
dPads - domain-specific Program architecture differentiable synthesis

• dPads framework:
Synthesize programs with high accuracy and low architecture cost

DSL Grammar

Differentiable
DSL Semantics

Architecture 
Search

Architecture 
Selection

Differentiable Program Synthesis

Training
Examples

BinaryCrossentropy
CategoricalCrossentropy
…

DSL
Program

DSL Architecture
Cost Model (details 
in the paper)



dPads Experiments

Table 1: Experiment results. All results are reported as the average of runs on five random seeds.
Costs of time are set in minutes.

Crim13-sniff Fly-vs-fly Bball-ballhandler Sk152-10 actions
F1 Acc. Time F1 Acc. Time F1 Acc. Time F1 Acc. Time

RNN .481 .851 - .964 .964 - .980 .980 - .414 .428 -
A⇤-NEAR .286 .820 164.92 .828 .764 243.82 .940 .934 553.01 .312 .315 210.23

IDS-BB-NEAR .323 .834 463.36 .822 .750 465.57 .793 .768 513.33 .314 .317 848.44
dPads .458 .812 147.87 .887 .853 348.25 .945 .939 174.68 .337 .337 162.70
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Figure 5: Results of the Crim13, SK152, Fly-vs-fly and Basketball datasets on 5 random seeds. x
axis refers to costs of time recorded in minutes and y axis refers to F1 scores.

We visualize the results of dPads and NEAR in terms of F1 scores (y axis) and running times (x axis)300

on the 5 random seeds in Fig. 5 where red triangles refer to the results of dPads, and black plus marks301

and rectangles refer to the results of A⇤-NEAR and IDS-BB-NEAR. dPads consistently outperforms302

NEAR in achieving higher F1 scores with less computation and is closer to the RNN baseline.303

Although the RNN baseline provides better performance, dPads learns program that are more304

interpretable. Fig. 6 shows the best programs synthesized by dPads on Crim13 and SK152 (among305

all the 5 random seeds). The programmatic classifier for Crim13 has a very simple architecture306

and achieves a high F1 score 0.475 (only 0.006 less than the RNN result). The program is highly307

human-readable and can be interpreted as follows: it evaluates the likelihood of "sniff" by applying a308

position bias and if the distance between two mice is small they are doing a "sniff". The programmatic309

classifier for SK152 achieves an F1 score 0.35 which is close to the RNN baseline. It uses the arm310

and leg positions of a 3-D skeleton to complete a human-action classification.311

Ablation study. We investigate the effect of the top-N preservation strategy in program architecture312

synthesis (Sec. 3.2) and its impact on searching optimal programs (Sec. 3.3) using the Crim13313

and SK152 datasets. We set N to be 1, 2, 3 respectively and study how dPads responds to these314

changes. Table 2 summarizes the average results of F1 score, accuracy and time cost, and the standard315

deviations of these results. When N = 1, dPads synthesizes programs directly from an optimized316

program derivation graph without further exploiting a variant of A⇤ search. There is a significant317

decrease in time consumption compared with N = 2, however, dPads in this condition achieves less318

F1 scores and the results have a high variance, which suggests that architecture weights learned using319

only differentiable search overfit to sub-optimal programs. dPads gets similar F1 scores on both the320

two datasets when setting N = 3 compared to N = 2 but consumes more time. This confirms that321

leaving a large search space to the discrete graph search algorithm is time-expensive.322

5 Related Work323

Program Synthesis. Tasks in program synthesis aim to search for programs in a DSL to satisfy a324

specification over program inputs and outputs. There is also a growing literature on applying deep325

learning methods to guide the search over program architectures [4, 21–28]. There exist efforts that326

extend this line of research to program synthesis from noisy data [1, 2, 29–33]. These approaches327

either require a detailed hand-written program template or simply enumerate the discrete space of328

program architectures permitted by a DSL. Additionally, most of these literature methods build329

models that are trained using corpora of synthesis problems and solutions, which are not available330

in our setting. The most closest work to our technique includes [34, 5] that enumerate the space of331

program architectures prioritizing search directions with feedback from machine learning models.332
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• Results on four sequence classification benchmarks.
• Comparison with NEAR (a state-of-the-art program learning method based on 

discrete graph search)

• Differentiable program synthesis (dPads) outperforms discrete search.
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Summary

• We present a novel differentiable framework for program synthesis that jointly 
optimizes program derivations and parameters in a continuous relaxation of the 
discrete program architecture search space.

• We instantiate the differentiable program synthesis framework in the context of 
sequence-classification tasks. Experiment results demonstrate that our program 
synthesizer dPads outperforms state-of-the-art program learning methods. 


