RUTGERS

THE STATE UNIVERSITY
OF NEW JERSEY

Differentiable Synthesis of Program Architectures

Guofeng Cui He Zhu

Sequence Classification Tasks

* Classify a sequence input to a certain category

Collision Wing Extension h
C

Fly-vs-fly Dataset Croq —

LSTM CNN

Walk Away Sniff

Crim13 Dataset Model is not easily interpretable!

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

X: program input as a sequence of frames where each

. { features(f- 4
frame contain a set of features :

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

X: program input as a sequence of frames where each

. { features(f- 4
frame contain a set of features :

¢, Add, Multiply: constant, arithmetic operations

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

X: program input as a sequence of frames where each

. { features(f- 4
frame contain a set of features :

¢, Add, Multiply: constant, arithmetic operations

ITE a; = 0 a, as: If-Then-Else

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

1), features(‘ | }

x: program input as a sequence of frames where each frame {features(e iy
contains a set of features s

¢, Add, Multiply: constant, arithmetic operations

ITE a; = 0 a, as: If-Then-Else

Fs ¢ (x): parameterized function that extracts a subset S of features“m

from a data frame x and passes the extracted features througha PositionAffine 0,1, 2,3 mice positions
linear function with parameters @ (for interpretability) DistanceAffine 4 mice distance

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

X: program input as a sequence of frames where each frame { features(f g 1), features(' =
contains a set of features e

¢, Add, Multiply: constant, arithmetic operations

ITE a; = 0 a, as: If-Then-Else

Fs ¢ (x): parameterized function that extracts a subset S of features“m

from a data frame x and passes the extracted features througha PositionAffine 0,1, 2,3 mice positions
linear function with parameters @ (for interpretability) DistanceAffine 4 mice distance

map, mapprefix, fold, SlideWindowAvg: standard higher-order combinators to recurse over sequences

Interpretable Sequence Classification via Program Synthesis

* Synthesize a program in the DSL to classify a sequence of actions made by two
mice to “sniff” or “no sniff”.

Map(
Multiply(

PositionAffine s, (x;), DistanceAffine s,(x;))) x
Walk Away Sniff 1 |

Doing “sniff” if two mice are close

i Position bias

Crim13 Dataset Program Synthesized

* Problem Formulation:

a :=x|c|Adda, a, | Multiply a, a, | ITEa; =0 a, a; | Fs4(x) | map (fun x,.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a;) c x | SlideWindowAvg (fun x,.a,) x

arg min E(P(-; Q, 9)) where E(P(-; Oz,H)) =]Eik,okND[g(P(ik‘; (Xae)a()k)]

o0

synthesize a program P prediction error loss on a sequence i, w.r.t its category oy

Interpretable Sequence Classification via Program Synthesis

* Define a Context-free DSL Grammar to define a program architecture search space.

a :=x]|c|Add a; a, | Multiply a; a, | ITEa; =0 a, a3 | Fs o (x) | map (fun x;.a,) x |
mapprefix (fun x;.a;) x | fold(fun x,.a,) c x | SlideWindowAvg (fun x;.a,) x

* Challenge - Discrete and combinatorial search for programmatic classifiers.

5 o [i
i 1 _é%dlgzlqﬁz% T ITE F(;g I‘l;llizp Mapprefi F01['d SIideV\ngvg E
| e PR
: 0 Soff'“t 0 S;;Ot o S;;""t E e
A S S S ! Architecture Enumeration is Inefficient!
: 1 [] Multyply E% :
\ 4

Add Multypl ITE
2 el |l | e

__

Differentiable Program Architecture Synthesis

* Differentiable Program Derivations.
/ A program derivation grapm

| Add Mul x Pepth
Add: a1° [045 02 035
w
Depth 1
Depth 2

o)

* Encode the entire search space (up to a depth bound) as a differentiable program T, g with
architecture weight w and the parameters 6 in all programs sharing the search space.
* Program synthesis as optimizing T, g with respect to the accuracy loss on training examples.
* w and @ learned via bi-level optimization using gradient descent.

* Differentiable Program Semantics.

[ITE (a; = 0, a3, a3)](x) = o([ay]1(x)) - [ax1(x) + (1 = olla;](x)) - [ar3](x)

However, training is still difficult as TW,Q is exponentially large!

Optimizing Differentiable Architecture Search

* 1. Node Sharing.

Start

0 oo Depth 0
a,’
1 Add ITE Map Depth 1
a;’ ar®||ait aytal? a;”?

Optimizing Differentiable Architecture Search

* 1. Node Sharing.

Add Mul «x Start
- Ol 0 = Depth 0
Add:a;"| 0.4 0.21 0.39 a4y
ITE: a}*[0.3 0.15 0.45 l
Map:all'z 0.2 0.53 0.27
w Add ITE Map Depth 1
1 ai.,O a;,o all,l a;,la;,l ai,Z
M./
Add Mul X
220 20 21 2,1 @ Depth 2
al a2 al aZ

Nonterminals in partial architectures of the same node share child nodes.
* For example, the first parameters of Add a%’o and ITE a}’l on node 1 share child node 2.

Optimizing Differentiable Architecture Search

* 1. Node Sharing.

Fold Av X Start
1‘0| g 0 — Depth 0
Add:a;”| 0.2 034 0.46 &1
ITE: ay*[0.5 0.17 0.33 $
Map: @ 0 0 0
1 1,0 1,0 1,1 1,1 1,1 1,2 p
a;”a, a

Add
220 20

a, a,

Depth 2

* Nonterminals in partial architectures of the same node share child nodes.
* For example, the second parameters of Add a%’o and ITE a%’l on node 1 share child node 3.

Optimizing Differentiable Architecture Search

* 1. Node Sharing.

Fold Av X Start
1‘0| g 0 — Depth 0
Add:a;”| 0.2 034 0.46 &1
ITE: ay*[0.5 0.17 0.33 $
Map: @ 0 0 0
1 1,0 1,0 1,1 1,1 1,1 1,2 p
a;”a, a

Add
220 20

a, a,

Depth 2

* Nonterminals in partial architectures of the same node share child nodes.

* For example, the second parameters of Add a%’o and ITE a%’l on node 1 share child node 3.
e Intuition — only one of the partial architectures on node 1 would be chosen in the final
derivation.

Optimizing Differentiable Architecture Search

* 1. Node Sharing.

Fold Av X Start
1‘0| g 0 — Depth 0
Add:a;”| 0.2 034 0.46 &1
ITE: ay*[0.5 0.17 0.33 $
Map: @ 0 0 0
1 1,0 1,0 1,1 1,1 1,1 1,2 p
a;”a, a

Add
220 20

a, a,

Depth 2

* Nonterminals in partial architectures of the same node share child nodes.

* For example, the second parameters of Add a%’o and ITE a%’l on node 1 share child node 3.
e Intuition — only one of the partial architectures on node 1 would be chosen in the final
derivation.
* Sharing reduces the width of a program derivation graph T}, g

Optimizing Differentiable Architecture Search

e 2. Iterative Graph Unfolding.

* At each iteration, we perform two steps

Optimizing Differentiable Architecture Search

e 2. Iterative Graph Unfolding.

® O -..o

®[0.3 0.36 - 0.02 m

2@0:::0]
m Extend

= Train w/6 |2.0 0”3‘0 Ol
[0 |

* At each iteration, we perform two steps:
* Unfolding — expand T,, g only ds-depth deeper with any remaining nonterminals in it
approximated by neural networks (d = 2).

Optimizing Differentiable Architecture Search

e 2. Iterative Graph Unfolding.

0 @]
Top-2 Sel. m

—)
I

20| (300
\ NlN / \ NlN /

* At each iteration, we perform two steps:
* Unfolding — expand T,, g only ds-depth deeper with any remaining nonterminals in it

approximated by neural networks (d = 2).
* Top-N preservation — after training an expanded T), g, on each node retain only the Top-N

architecture derivations for each partial architecture on the node’s parent (N = 2).
* Top-N ranked by trained architecture weights

Optimizing Differentiable Architecture Search

e 2. Iterative Graph Unfolding.

® O -..o

©]0.3 0.36 -+ 0.02 m m
1@0:-:-0|
Extend Top-2 Sel. m Extend
—) —)
KR

| I | e

Trainw/0 (2@ Q++sQ||3@O O |2.O| |3.O| Trainw/6 oL w o W

! >ollo 6020
_NN /" N_NN /

:@0-:-0|[c®@0---0] [00][s00]

* At each iteration, we perform two steps:
* Unfolding — expand T,, g only ds-depth deeper with any remaining nonterminals in it
approximated by neural networks (d = 2).
* Top-N preservation — after training an expanded T), g, on each node retain only the Top-N
architecture derivations for each partial architecture on the node’s parent (N = 2).
* Top-N ranked by trained architecture weights

Optimizing Differentiable Architecture Search

e 2. Iterative Graph Unfolding.

® O -..o

©]0.3 0.36 -+ 0.02 m m
1@0:-:-0|
Extend Top-2 Sel. m Extend
—) —)
KR

| I | e

Trainw/0 (2@ Q++sQ||3@O O |2.O| |3.O| Trainw/6 oL w o W

! >ollo 6020
_NN /" N_NN /

[:@0:.-O|[c@0:--0] [fo0][s00]

* At each iteration, we perform two steps:
* Unfolding — expand T,, g only ds-depth deeper with any remaining nonterminals in it
approximated by neural networks (d = 2).
* Top-N preservation — after training an expanded T), g, on each node retain only the Top-N
architecture derivations for each partial architecture on the node’s parent (N = 2).
* Top-N ranked by trained architecture weights
* |terative unfolding reduces the depth of a training graph considered at each iteration.

Optimizing Architecture Selection

* Upon convergence, select one discrete program from trained T, g.
* Challenge — architecture weights may be inaccurate due to compound nodes.

-

KE

Optimizing Architecture Selection

* Upon convergence, select one discrete program from trained T, g.
* Challenge — architecture weights may be inaccurate due to compound nodes.

0@ 0 ®
ool 1@ 12 0]
1./_\ 1(._\0
I | | | | |
2@0|(3 @0 2@0|(3 @0
= @00 @00
[so0][s00] [s00][s00]
500]|[s00]
0.35 0.27

* Split the top-left compound node in T, g to separate the architecture search space into disjoint
partitions and train each partition until convergence.

Optimizing Architecture Selection

* Upon convergence, select one discrete program from trained T, g.
* Challenge — architecture weights may be inaccurate due to compound nodes.

0@ 0 ®
ool 1@ 12 0]
1./_\ 1(._\0
I | | | | |
2@0|(3 @0 2@0|(3 @0
= @00 @00
[so0][s00] [s00][s00]
500]|[s00]
0.35 0.27

* Split the top-left compound node in T, g to separate the architecture search space into disjoint
partitions and train each partition until convergence.
* Maintain all partitions in a priority queue sorted by their quality (e.g., F1-score after convergence)

Optimizing Architecture Selection

* Upon convergence, select one discrete program from trained T, g.
* Challenge — architecture weights may be inaccurate due to compound nodes.

N

0 @® 0@ 0@ 0 ® 0@
[0 @]
ool
r@0][z@0] [:00]|[z@0] 22o][:e0] [2@07][:@0] [:00]|:00]
. 960 41@00] +@00] + @00 1 @00] @00
[so0][s00] [s00][s00] [foo][c00] [s00][c00] [s00][s00]
500]|[s00]
0.35 0.27 0.39 0.36 0.27

Split the top-left compound node in T}, o to separate the architecture search space into disjoint
partitions and train each partition until convergence.

Maintain all partitions in a priority queue sorted by their quality (e.g., F1-score after convergence)
Dequeue a partition from the priority queue and further split its top-left compound node.

Optimizing Architecture Selection

* Upon convergence, select one discrete program from trained T, g.
* Challenge — architecture weights may be inaccurate due to compound nodes.

VR

X] 0@ 0@ 0 ® 0@
[0 @]
T
2@0][z@0] [:00]|[z00] 2oo][:e0] [2@7]|[:@0] [:00]|:00]
200|[: 00| =~ o o o -
- 960 41@00] 4@00] + @00 4 @00] @00
[so0][s00] [s00][s00] [foo][c00] [s00][s00] [s00][s00]
500]|[s00]
0.35 0.27 0.39 0.36 0.27

0@ 0@
(120 12 0]
[2co][:@2] [220|[z@%]
[co][se2] [s~0][s00]
0.46 0.40

partitions and train each partition until convergence.

Algorithm terminates when a discrete program is dequeued.

Split the top-left compound node in T}, o to separate the architecture search space into disjoint

Maintain all partitions in a priority queue sorted by their quality (e.g., F1-score after convergence)
Dequeue a partition from the priority queue and further split its top-left compound node.

Implementation: dPads

* Implement the program learning algorithm in a tool dPads.
dPads - domain-specific Program architecture differentiable synthesis

e dPads framework:
Synthesize programs with high accuracy and low architecture cost

DSL Grammar e ~N
\ Differentiable Program Synthesis -
: ' Program _1r~,
Architecture Architecture /+1<+ I
: T L R
. . Search Selection |
Differentiable \)

DSL Semantics I

DSL Architecture
Cost Model (details
in the paper)

1

BinaryCrossentropy
CategoricalCrossentropy

I=
E Training

Examples

dPads Experiments

Results on four sequence classification benchmarks.
 Comparison with NEAR (a state-of-the-art program learning method based on

discrete graph search)

Crim13-sniff Fly-vs-fly Bball-ballhandler | Sk152-10 actions
F1 Acc. Time | F1 Acc. Time | F1 Acc. Time | FI Acc. Time
RNN 481 .851 - 964 .964 - 980 .980 - 414 428 -
A*-NEAR 286 .820 164.92|.828 .764 243.82|.940 934 553.01(.312 .315 210.23
IDS-BB-NEAR | .323 .834 463.36|.822 .750 465.57|.793 .768 513.33|.314 .317 848.44
dPads A58 812 147.87|.887 .853 348.25[.945 939 174.68|.337 .337 162.70
VR e N A Y B 0o 5oneRR
o 4 T+ om " o %99 Q085 + “ i u o 0.34AAA+ Ao
08)0.3 u § 85 § + " * | §0.32‘] -
0.85 0.804+ + [| ++ [
o + + A-NEAR o + A%NEAR oo 4 A*NEAR - e A
al, my TEE| o) Bozenn || E ow , w ™
200 400 600 200 400 600 200 300 400 500 200 400 600 800 1000
Time (min) Time (min) Time (min) Time (min)
(a) Crim13 (b) Basketball (c) Fly-vs-fly (d) SK152

* Differentiable program synthesis (dPads) outperforms discrete search.

Summary

* We present a novel differentiable framework for program synthesis that jointly
optimizes program derivations and parameters in a continuous relaxation of the
discrete program architecture search space.

* We instantiate the differentiable program synthesis framework in the context of
sequence-classification tasks. Experiment results demonstrate that our program
synthesizer dPads outperforms state-of-the-art program learning methods.

Thauk

you!

