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Dynamics-Regulated Kinematic Policy
for Egocentric Pose Estimation

Inferring physically valid human pose and human-object interactions from wearable headsets
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oo Estimating 3D Human Pose & Human-Object Interaction from
Egocentric Videos

From a video captured by a single head-mounted wearable camera (i.e. smart-glasses, action camera, body
camera), we want to infer and simulate the wearer’s 3D pose and interaction with objects in the scene

Input: egocentric video Output: 3D human pose Reference 3rd person pose

I,.7(Input video frames) — q,.(3D human pose)
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Model overview

Kinematics-based approach

Study motion without regard to forces that cause it

e Universal humanoid Controller: task agnostic physics-based humanoid controller
« Dynamics-regulated kinematic policy inside a physics simulation (Mujoco)
e |nitialization module for estimating object pose and image features

e Per-step policy for causal physics-based pose estimation

Egocentric Input

Dynamics-Regulated

Initialization Kinematic Policy

Universal

Humanoid Physics

Simulation

Controller

Dynamics-based approach

Study motion that result from forces

Pose Estimation Result




THI

ROBOTICS
INSTITUTE

Universal Humanoid Controller

e Task agnostic physics-based humanoid controller
e Input: next-frame target pose; output: control signals
e Trained using Reinforcement Learning
e Compatible with SMPL.:
e Able to perform 97% of sequences from the AMASS dataset

Input: target pose
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Given an input sequer‘of target motion
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Dynamics-regulated Kinematic Policy

e Utilizing the humanoid controller:

e Naive Approach: physics simulation as post processing

_’.j Kinematics and dynamics stays disjoint!
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Dynamics-regulated Kinematic Policy

e Initialization module:
e Off-the-shelf camera pose and object pose extractor
e Optical-flow image feature extractor

« Computes first-frame humanoid pose

Input: Video sequence |

w4 Initialization
Pose :
41 simulation

: Initialize physics

Image

Features
b i Per-frame features
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Dynamics-regulated Kinematic Policy

e Per-step model

e Input: current humanoid pose from physics simulation and image features
e Qutput: per-step target pose for universal humanoid controller

e Closed loop system with pose estimation and control

Input: Video sequence
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Dynamics-regulated Kinematic Policy

e Optimization: dynamics regulated training

o Mixture of Supervised learning and Reinforcement learning.
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Reinforcement learning

Not differentiable

We know the GT
target

We know the GT target

from MoCap
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Behavior cloning/supervised learning
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Evaluation
Egocentric video GT MoCap Egocentric video  Data capture mount
Mocap Data Real world data

o 3 Subjects, paired egocentric videos,
human pose, and object pose
e 266 takes in total, 6-10 seconds
e Actions:
o Sitting down/Standing up, avoiding
obstacles, pushing a box, stepping on
a box.
e Captured in a mocap studio
o 8:2 split for training and testing

e 1 Subject, egocentric videos

e Object pose from Apple ARKit

e VIO Camera trajectory from
Apple ARKit

e 183 takes in total, 6-10 seconds

e Actions:

e Sitting down/Standing up,
avoiding obstacles, pushing a
box

e Captured in a living room
e All used for testing
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Evaluation: Baselines

PoseReg (kinematics-only) EgoPose (dynamics-only)

[Yuan et al. ICCV 2019] [Yuan et al. ICCV 2019]
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F..oot : root pose error

inter:

Evaluation: Results

: Human-object interaction success rate

FS :foot sliding

F.,.c :human joint acceleration error

E...... : camera/head pose error

Kin_poly: dynamics-regulated (ours) v 96.9% : 0.205

40.443  7.064 2.474

E'mpjpe: human joint position error PT :penetration
MoCap dataset
Method Physics = Sipter T Eroot + Empipe +  Bace 4 FS L PT |
PoseReg X - 0.857  87.680 12.981 8.566 42.153
Kin_poly: supervised learning (ours) X - 0.176 33.149 6.257 5.579 10.076
EgoPose /i 484% :1.957 139.312 9933 2566  7.102

0.686

Real-world dataset

Method Physics  Sipter T Eeam & FS 1L PT | Per class success rate Sijier T
PoseReg X - 1.260 6.181 50.414 .. .
Kin_poly: supervised learning (ours) X - 0491 5.051 34.930 it Push — Avoid  Step
EgoPose Vi 93% :1.896 2.700 1.922 | 7.93% 681% 487%  0.2%

Kin_poly: dynamics-regulated (ours)

/:92.3% :0.476 2.742

1.229

98.4% 90.9% 100% 74.2%




Comparision with the state-of-the-art
on the hold-out MoCap dataset
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Limitations and Future Work

Limitation & Failure Modes

« Humanoid can still lose balance on challenging poses.

o Kinematic policy is trained on a relatively small dataset, and
requires known action classes as a strong prior.

e Does not handle head rotation well.

Future directions

e Factoring in hand and figure motion for egocentric human-

object interaction.

e Incorporating universal humanoid controller to third person

pose estimation.

e Full body egocentric pose estimation on large scenes.

Failure cases
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Applications and Conclusions

e Egocentric pose estimation:
e Inferring wearer’s motion and interaction with the scene
e Telepresence

e Universal humanoid controller and kinematic policy:
e Physically-valid human motion estimation

e Robotics/Manipulation

https://zhengyiluo.github.io/projects/kin_poly/
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