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Newton’s method in composite optimization
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Newton’s method in composite optimization
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Newton’s method in composite optimization

n
Find: x" = argmin f(x), for f(x)= Z fi(x)
x i=1
Newton estimate: pr=| V3 (xy) ]71 Vf(x¢)
—— —
Hessian estimate H  dx1 gradient
Xt Xii1 = Xt — [P
o .\t|+1 t — HtPt

X*
[ ]



Computing the Hessian

Cost: O(nd?) d

V2f(x) = Vfi(x) = Ap(x)  As(x)
i=1

Example: Generalized Linear Model

F6) = S o] %),
=1

V() = - S H(0] )0

i=1




Newton Sketch [PW17]

A:At ~ VQf(Xt)

it+1 = )th — Mt( Af()’zt)TS:StAf()’Et) )_1Vf(§t)

n

m Sketching matrix S;

x || Ag(xe)

Sketch At




Example 1: Gaussian Newton Sketch

Sketching matrix S; has i.i.d. Gaussian entries

Cons
@ Strong convergence @ Computationally expensive
@ Robust to the worst case
Sketching matrix S¢ Ag(xt)
T iid.
X

Extension: Sub-gaussian embeddings, e.g., with i.i.d. random sign entries



Example 2: Sub-Sampled Newton

Randomly select m rows of A f(x;)

Cons

@ Computationally cheap @ Weaker convergence

@ Sensitive to the worst case

Sketching matrix S Ag(xt)

Si.

= X

1 non-zero per row

Extension: Importance sampling, e.g., according to leverage scores



LESS Embeddings: Fast Gaussian-like Sketches

LEverage Score Sparsified (LESS) Embeddings:

Leverage Score Sampling +  Sparse Embedding Matrices

randomly sparsified
sub-gaussian entries

T n

sampled using
leverage scores

Introduced by [DLDM21] “Sparse sketches with small inversion bias”, COLT21.



Newton-LESS: Sparsity without trade-offs

Sampling s=1
Computational Cost
LESS s=d
Convergence Rate
N
N
~
~

Gaussian s=mn Se o -

|
Sampling LESS Gaussian

S NON-ZEeros per row Sketch Density

Jaz|2\ " S
Convergence Rate = E TE where A; =x; —x
0
Computational Cost =  O(mds) + O(md?) + O(nd)

—_—— —— ——

sketch Hessian gradient
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Main result: Problem-independent local convergence

Assumptions: Hessian H = V2 f(x*) is positive definite and f is
(a) self-concordant, or (b) has a Lipschitz continuous Hessian.

Sketching matrix: Gaussian, sub-Gaussian, or LESS embedding
with sketch size m at least C'dlog(dT'/¢)

Theorem
There is a neighboorhood U containing X* such that if Xg € U,

then we can choose step size p; so that:

||AT||%{>”T d 1
E Ne — or €e=0(—
( Bl m (72)

Es is expectation conditioned on a 1 — § probability event;
[v]lg = vVvTHyv; a =~ bmeans that (1—¢)-b<a<(l4e¢€)-b
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Main result: Problem-independent local convergence

Assumptions: Hessian H = V2 f(x*) is positive definite and f is
(a) self-concordant, or (b) has a Lipschitz continuous Hessian.
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with sketch size m at least C'dlog(dT'/¢)

Theorem
There is a neighboorhood U containing X* such that if Xg € U,

then we can choose step size p; so that:
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Main result: Discussion

(e

e Same problem-independent ( %)T convergence rate for

LESS and Gaussian (down to lower order terms)

e Simple analytic expression for the optimal step size pu;:

X1 =% —(1—2)p;, when E[p]=~ p:.
———
1243

e Extension to regularized objectives f(x) = fo(x) + g(x):

the convergence rate becomes dimension-independent,

6HATH%I>”T< deft
120llZ: m

for  degr = tr(V2fo(x*)V2f(x") )



Comparison to prior work

e Under quadratic objectives f(x) = ||Ax — b||?,
the convergence rate (%)T was previously shown only for:
@ strictly Gaussian embeddings [LP19],
@ Subsampled Randomized Hadamard Transform (SRHT) in
a high-dimensional asymptotic limit [LLDP20].

e For general objectives and fast sketching methods, e.g.:
© Row sampling (Leverage Scores) [DMMO06],
@ Sparse sketches (CountSketch and SJLT) [CW17],
@ Trigonometric sketches (SRHT and SRTT) [AC09],
[

the best known rate is (C'log(dT/§) - %)T PW17].

Note: Extra constant and logarithmic factors in the bound
means no analytic expressions for the optimal step size



Analysis: Two approaches

@ Subspace embedding (most prior work)

e Standard approximation guarantee for sketching methods

o Leads to subopotimal convergence rates: (C'log(d1/d)- %)T

Ap(Xe) S/SiA (%) =y V().

© Method of inverse moments (this work)

o Originally proposed for quadratic objectives [LP19]
e Leads to precise convergence rates and optimal step sizes

e Requires inverse moments of the sketched Hessian

E{(Af(it)Ts;stAf(it)yk] for k=12



Comparison of sketching methods

@ Subspace embedding

@ Method of inverse moments

Sub-Gaussian Embedding

Sketching S Data A leverage scores

S;

i-th leverage score: /(;(A) = i-th diagonal entry of AAT



Comparison of sketching methods

@ Subspace embedding

@ Method of inverse moments X

Leverage Score Sampling [DMMO6]

Sketching S Data A leverage scores
]

I

.
Si

1 non-zero per row

i-th leverage score: (;(A) = i-th diagonal entry of AAT



Comparison of sketching methods

@ Subspace embedding

@ Method of inverse moments X

Uniform Sparsification [CW13]

Sketching S Data A leverage scores

s{
I 18— %

n/d non-zeros per row

i-th leverage score: (;(A) = i-th diagonal entry of AAT



Comparison of sketching methods

@ Subspace embedding

@ Method of inverse moments

Leverage Score Sparsification [DLDM21]

Sketching S Data A leverage scores
]

I

s ]

T T . X —J[J

d non-zeros per row

i-th leverage score: (;(A) = i-th diagonal entry of AAT



Implementing LESS Embeddings

@ Worst-case implementation (LESS)

o Preprocessing cost: O(nnz(A)logn + d°logd)
Approzimating leverage scores £;(A) [DMIMW12]

o Sketching cost: O(md?)

Sparse matrix multiplication SA

Cost = O(nnz(A)logn + md?)

@ Practical implementation (LESS-uniform)

o Use a uniformly sparsified sketch with ad non-zeros per row

o If & > % max; £;(A), then we recover theoretical guarantees

Cost = O(amd?)

nnz(A) = number of non-zeros in matrix A.



Experiments: Quadratic objective
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Experiments: Logistic regression

. Py GD = GD . L —4— Newton
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= log(1 —b;a; 5 .
min 21 0g(1 + exp(—bia; x)) + Z[Ix]|2

x€R T n

We use sketch size m = d/2. Bottom plots report the CPU and GPU

wall-clock times to reach a 107¢ accurate solution.



Conclusions

o Newton-LESS: Sparsification without trade-offs
@ Per-iteration efficiency of Sub-Sampled Newton

@ Same convergence rate as Gaussian Newton Sketch

@ Sparse sketching can beat Sub-Sampling...

@ ...in real-world optimization tasks

@ ...on a variety of hardware platforms

o LESS Embeddings: Fast Gaussian-like sketches
@ Correcting the bias in distributed optimization = [DLDM21]

@ Precise convergence rates and optimal step sizes (this work)

Code available at: https://github.com/lessketching/newtonsketch


https://github.com/lessketching/newtonsketch
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