ON PATHOLOGIES IN KL-REGULARIZED REINFORCEMENT LEARNING FROM EXPERT DEMONSTRATIONS

TIM G. J. RUDNER*

Cong Lu*

MICHAEL A. OSBORNE

YARIN GAL

YEE WHYE TEH

NEURAL INFORMATION PROCESSING SYSTEMS 2021

Correspondence to

tim.rudner@cs.ox.ac.uk

How can we use expert demonstrations to

effectively accelerate online training in RL?

KL-regularization balances fitting online data and matching a behavioral expert policy.

KL-regularization balances fitting online data

and matching a behavioral expert policy.

KL-regularization balances fitting online data

and matching a behavioral expert policy.

Expert Demonstration

Learned Behavior

Expert Demonstration

Learned Behavior

How can we avoid pathological behavior

that may result in poor policies?

why such pathologies may occur in theory;

why such pathologies may occur in theory;

why they occur in practice;

why such pathologies may occur in theory;

why they occur in practice;

how to prevent them.

Goal

Goal

Learn a good policy in as few environment interactions as possible

Goal

Learn a good policy in as few environment interactions as possible

How?

Use expert demonstrations to give agents a head start

Goal

Learn a good policy in as few environment interactions as possible

How?

- Use expert demonstrations to give agents a head start
- Common approach: Behavioral cloning
 - offline: $\mathcal{D}_0 = \{(\mathbf{s}_n, \mathbf{a}_n)\}_{n=1}^N = \{\overline{\mathbf{S}}, \overline{\mathbf{A}}\} \longrightarrow \pi_0(\cdot | \mathbf{s})$

Goal

Learn a good policy in as few environment interactions as possible

How?

- Use expert demonstrations to give agents a head start
- Common approach: Behavioral cloning + KL regularization
 - offline: $\mathcal{D}_0 = \{(\mathbf{s}_n, \mathbf{a}_n)\}_{n=1}^N = \{\overline{\mathbf{S}}, \overline{\mathbf{A}}\} \longrightarrow \pi_0(\cdot | \mathbf{s})$
 - online: $\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) \alpha \mathbb{D}_{\mathrm{KL}}\left(\pi\left(\cdot \mid \mathbf{s}_k\right) \| \pi_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$

KL-REGULARIZED REINFORCEMENT LEARNING

Kullback-Leibler divergence

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\boldsymbol{\pi}\left(\cdot \mid \mathbf{s}_k\right) \| \boldsymbol{\pi}_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

Note!

KL-REGULARIZED REINFORCEMENT LEARNING

Kullback-Leibler divergence

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\boldsymbol{\pi}\left(\cdot \mid \mathbf{s}_k\right) \middle| \boldsymbol{\pi}_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

Note!

KL divergence is well-defined (i.e., finite) if and only if learned policy is absolutely continuous w.r.t. behavioral policy

KL-REGULARIZED REINFORCEMENT LEARNING

Kullback-Leibler divergence

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\boldsymbol{\pi}\left(\cdot \mid \mathbf{s}_k\right) \| \boldsymbol{\pi}_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

Note!

- KL divergence is well-defined (i.e., finite) if and only if learned policy is absolutely continuous w.r.t. behavioral policy
- Potential failure mode: degenerate behavioral policies

Could this be an issue in practice?

WHEN IS THE KL DIVERGENCE WELL-DEFINED?

$$\mathbb{D}_{\mathrm{KL}}\left(q\|\mathbf{p_1}\right) = 0$$

When Is The KL Divergence Well-Defined?

$$\mathbb{D}_{\mathrm{KL}}\left(q\|\mathbf{p_1}\right) = 0 < \mathbb{D}_{\mathrm{KL}}\left(q\|\mathbf{p_2}\right)$$

WHEN IS THE KL DIVERGENCE WELL-DEFINED?

$$\mathbb{D}_{\mathrm{KL}}(q||p_1) = 0 < \mathbb{D}_{\mathrm{KL}}(q||p_2) < \mathbb{D}_{\mathrm{KL}}(q||p_3)$$

WHEN IS THE KL DIVERGENCE WELL-DEFINED?

$$\mathbb{D}_{\mathrm{KL}}(q||p_{1}) = 0 < \mathbb{D}_{\mathrm{KL}}(q||p_{2}) < \mathbb{D}_{\mathrm{KL}}(q||p_{3}) < \mathbb{D}_{\mathrm{KL}}(q||p) = \infty$$

WHEN IS KL-REGULARIZED MEANINGFUL?

Potential Failure Mode

If variance of behavioral policy tends to zero, KL blows up

WHEN IS KL-REGULARIZED MEANINGFUL?

Potential Failure Mode

If variance of behavioral policy tends to zero, KL blows up

Is this a problem in practice?

- How fast does the KL divergence blow up?
- Do commonly used behavioral policy have vanishingly small variance?

Parametric policy predictive variance

Parametric policy predictive variance

Parametric policy predictive variance

Parametric policy predictive variance

EFFECT OF DECREASING PRIOR VARIANCE ON PERFORMANCE

EFFECT OF DECREASING PRIOR VARIANCE ON PERFORMANCE

EFFECT OF DECREASING PRIOR VARIANCE ON PERFORMANCE

EFFECT OF DECREASING PRIOR VARIANCE ON PERFORMANCE

Proposition 1 (informal).

Proposition 1 (informal).

Let the objective function be given by

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\pi\left(\cdot \mid \mathbf{s}_k\right) \| \pi_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

Proposition 1 (informal).

Let the objective function be given by

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\pi\left(\cdot \mid \mathbf{s}_k\right) \| \pi_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

Let the online and behavioral policies be Gaussian distributions

Proposition 1 (informal).

Let the objective function be given by

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\pi\left(\cdot \mid \mathbf{s}_k\right) \| \pi_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

- Let the online and behavioral policies be Gaussian distributions
- Let the online policy be parametrized by $\mathbf{a}_t = f_\phi\left(\epsilon_t; \mathbf{s}_t\right)$

Proposition 1 (informal).

Let the objective function be given by

$$\tilde{R}(\boldsymbol{\tau}_t) = \sum_{k=t}^{\infty} \gamma^k \left[r\left(\mathbf{s}_k, \mathbf{a}_k\right) - \alpha \mathbb{D}_{\mathrm{KL}}\left(\pi\left(\cdot \mid \mathbf{s}_k\right) \| \pi_0\left(\cdot \mid \mathbf{s}_k\right)\right) \right]$$

- Let the online and behavioral policies be Gaussian distributions
- Let the online policy be parametrized by $\mathbf{a}_t = f_{\phi}\left(\epsilon_t; \mathbf{s}_t\right)$
- Then:

$$\left|\hat{\nabla}_{\phi}J_{\pi}(\phi)\right| o \infty \text{ as } \sigma_{0}^{2} o 0 \text{ with } \mathcal{O}\left(\sigma_{0}^{-2}\left(\mathbf{s}_{t}\right)\right)$$

AVOIDING PATHOLOGIES IN KL-REGULARIZED RL

Prevent predictive uncertainty collapse in behavioral policies

Goal: increase predictive variance away from expert demonstrations

AVOIDING PATHOLOGIES IN KL-REGULARIZED RL

Prevent predictive uncertainty collapse in behavioral policies

- Goal: increase predictive variance away from expert demonstrations
- Non-parametric Gaussian process behavioral policy

AVOIDING PATHOLOGIES IN KL-REGULARIZED RL

Prevent predictive uncertainty collapse in behavioral policies

- Goal: increase predictive variance away from expert demonstrations
- Non-parametric Gaussian process behavioral policy
 - Prior: $A|s \sim \pi_0(\cdot|s) = \mathcal{GP}(m(s), k(s, s'))$
 - Posterior: $A|s, \mathcal{D}_0 \sim \pi_0(\cdot|s, \mathcal{D}_0) = \mathcal{GP}(\mu_0(s), \Sigma_0(s, s'))$
 - Mean: $\mu_0(s) = m(s) + k(s, \bar{S})(k(\bar{S}, \bar{S}))^{-1}(\bar{A} m(\bar{A}))$
 - Covariance: $\Sigma_0(s,s') = k(s,s') + k(s,\bar{S})k(\bar{S},\bar{S})^{-1}k(\bar{S},s')$

Well-Calibrated Predictive Uncertainty

Parametric

Well-Calibrated Predictive Uncertainty

MuJoCo Locomotion Tasks

Dexterous Hand Manipulation Tasks

pen-binary-v0

door-binary-v0

Dexterous Hand Manipulation Tasks

pen-binary-v0

door-binary-v0

Dexterous Hand Manipulation: pen-binary-v0

Dexterous Hand Manipulation: pen-binary-v0

Dexterous Hand Manipulation Example: door-binary-v0

Dexterous Hand Manipulation Example: door-binary-v0

Fixing the pathological training dynamics in KL-regularized RL leads to state-of-the-art performance

COULD BETTER UNCERTAINTY QUANTIFICATION FIX THE PATHOLOGY?

- Bayesian Neural Networks
- Deep Ensembles
- Lower-bounding Parametric Behavioral Policy Variance

CAN A SINGLE EXPERT DEMONSTRATION BE SUFFICIENT?

MuJoCo Locomotion Example: HalfCheetah

KL-regularized RL can suffer from pathological behavior during training.

KL-regularized RL can suffer from pathological behavior during training.

KL-regularized RL can suffer from pathological behavior during training.

The pathology can be remedied by non-parametric behavioral policies.

KL-regularized RL can suffer from pathological behavior during training.

The pathology can be remedied by non-parametric behavioral policies.

KL-regularized RL can suffer from pathological behavior during training.

The pathology can be remedied by non-parametric behavioral policies.

Fixing the pathology leads to state-of-the-art policies and data-efficient online training.

KL-regularized RL can suffer from pathological behavior during training.

The pathology can be remedied by non-parametric behavioral policies.

Fixing the pathology leads to state-of-the-art policies and data-efficient online training.

THANK YOU!

TIM G. J. RUDNER*

Cong Lu*

MICHAEL A. OSBORNE

Yarın Gal

YEE WHYE TEH

CORRESPONDENCE: tim.rudner@cs.ox.ac.uk

PROJECT WEBSITE: https://sites.google.com/view/nppac