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How can we use expert demonstrations to

effectively accelerate online training in RL?
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How can we avoid pathological behavior

that may result in poor policies?
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why such pathologies may occur in theory;
why they occur In practice;

now to prevent them.
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REINFORCEMENT LEARNING FROM EXPERT DEMONSTRATIONS

Goal
~ Learn a good policy in as few environment interactions as possible
How?

~ Use expert demonstrations to give agents a head start

>~ Common approach: Behavioral cloning + KL regularization

> offline: Dy = {(Snvan)}N =1{S,A} — my(|s)

> online: ZW Sk,ak alDkr, (7T ( \ Sk) H7To ( | Sk:))]
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Kullback-Leibler divergence

Zv r (Sk,ax) — aDxy (7 (- [ sk) [[70 (- | sk))]

Note!

> KL divergence is well-defined (i.e., finite) if and only if learned policy

is absolutely continuous w.r.t. behavioral policy

> Potential failure mode: degenerate behavioral policies



Could this be an issue in practice?
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)k (¢]lp1) =0 <

Dkt (q]|p2) <

Ik (qlp3) <

)k (q|lp) = o0
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Potential Faillure Mode

> |If variance of behavioral policy tends to zero, KL blows up

Is this a problem in practice?

> How fast does the KL divergence blow up?

> Do commonly used behavioral policy have vanishingly small variance?
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EFFECT OF DECREASING PRIOR VARIANCE ON PERFORMANCE
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EXPLODING GRADIENTS IN KL-REGULARIZED RL OBJECTIVES

Proposition 1 (informal).

> Let the objective function be given by

Zv r (Sk,ax) — aDky (7 (- | sk) [|70 (- | sk))]

> Let the online and behavioral policies be Gaussian distributions
> Let the online policy be parametrized by a; = f (& s¢)

> Then:
@(bJW(gb) — 00 as o5 — 0 with O (o Q(St))
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AVOIDING PATHOLOGIES IN KL-REGULARIZED RL

Prevent predictive uncertainty collapse in behavioral policies

> Goal: increase predictive variance away from expert demonstrations

> Non-parametric Gaussian process behavioral policy

> Prior: Als ~ mo(+|s) = GP(m(s), k(s, S/))
> Posterior: Als, Dy ~ mo(+|s, Do) = GP(uo(s), Xo(s,s))
> Mean: po(s) = m(s) + k(s, S)(k(S,S)) " (A —m(A))
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WELL-CALIBRATED PREDICTIVE UNCERTAINTY

Parametric
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WELL-CALIBRATED PREDICTIVE UNCERTAINTY

Parametric Non-Parametric
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KL-REGULARIZED RL WITH NON-PARAMETRIC BEHAVIORAL POLICIES

MuJdoCo Locomotion Tasks
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pen-binary-v0

_——-—-———-—"' =TTl
- - E—

1.00

- — — -
-

0.75k
(). 5 === === m e

0.251

0.00

1.00
%

.,.-*.——--—--—-——-—._—-—.

0.50r

» s ® "
_.,.,,.-.-:a’.-‘_.__...—

- orm

2 w7
‘—‘/.-’
~"°

0.25+ »

-/
¢/
> -

100K 200K 300K 100K
Timesteps

0,00 s

—— N-PPAC (Ours) BRAC -—= AWAC === AWR  =--- ABM
SACED —.= SAC+BC —:=- BEAR —-- DAPG



KL-REGULARIZED RL WITH NON-PARAMETRIC BEHAVIORAL POLICIES

Dexterous Hand Manipulation: pen-binary-v(
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KL-REGULARIZED RL WITH NON-PARAMETRIC BEHAVIORAL POLICIES

Dexterous Hand Manipulation Example: door-binary-v(
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T AKEAWAY

Fixing the pathological training dynamics in
KL-regularized RL leads to state-of-the-art performance



COULD BETTER UNCERTAINTY QUANTIFICATION FIX THE PATHOLOGY?

> Bayesian Neural Networks
> Deep Ensembles

> Lower-bounding Parametric Behavioral Policy Variance
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CAN A SINGLE EXPERT DEMONSTRATION BE SUFFICIENT?

MuJoCo Locomotion Example: HalfCheetah
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