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Background: Graph Neural Networks

Graph representation learning o
Node classification
GNN 1.2 a
|:> X = [—2‘ |:> Link prediction
RSN
Graph classification
Message passing in GNNs

* Scope: from what neighbors?
* Depth: by how many iterations / layers?

@® Target node
© 1-hop neighbor
© 2-hop neighbor
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Scalability & Expressivity Challenges

GNN designs by default (on large scale graphs):

Increasing the depth : .; Expanding the scope
@ayer GNN) @op neighborhood)

Neighborhood

explosion
~dL

e, —_———

Dilemma in deep GNN: scalability-expressivity tradeoff
* Depth is important: Experience from general deep learning

* Depth is expensive: Observation from graph message passing
* Depth can cause training challenges: Oversmoothing in GCN

Solution: Don’t forget the scope!



Depth-Scope Decoupling

Define scope independent of depth

* Intuitions
* Some neighbors are irrelevant 2 no need to pass their messages
* Some neighbors are extra important 2 worth passing their messages many times

* Example: Deep (L'-layer) GNN on shallow (L-hop) subgraph

Algorithm: generate embedding for a target node v of the full graph §

1. Extract a subgraph Gp,; around v

2. for round i=1 to L':
Perform message passing along all edges in Gy,

3. Take v’s embedding from all node embeddings of Gy




Depth-Scope Decoupling

: Scope Data
Interpretation " Lisa property of the {
Depth Model

Alternative view on the input graph
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Observed large graph %O

. Union of Iatent small graphs
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Enlarging the GNN design space
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Theoretical Justifications: Overview

Decoupling improves GNN expressive power, from the perspectives of
e Graph signal processing: decoupled-GCN avoids oversmoothing

* Function approximator: decoupled-SAGE learns some target function
* Topological information: decoupled-GIN exceeds 1-WL test

Decoupling improves GNN scalability
* Deep model + large graph # Exploding scope
* With fixed-size scope, complexity is linear with the model depth



Theoretical Justification: Graph Signal
Processing Perspective

Oversmoothing of GCN Non-smoothing of decoupled-GCN

* Each GCN layer smooths features of ¢ GCN layers only smooths the
direct neighbors features within G,

* For u # v, their scopes are both the * For u # v, their scopes can be
full graph § different Gy # G

* Many GCN layers smooths features « Smoothing different set of features
of the full graph § produces distinctive embeddings




Theoretical Justification: Function
Approximator Perspective

Decoupled-SAGE is more expressive than GraphSAGE

Consider neighborhood G’ & function 7 for linear comb. of G’ features
* GraphSAGE cannot approximate T well, even if G’ is L-hop neighborhood
* Decoupled-SAGE can approximate T where

Scope Gy) = G’ Depth reduces the error exponentially

Normalized adj. matrix Deep decoupled-SAGE
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Neighborhood G'  Markov transition matrix Markov chain convergence theorem




Theoretical Justification: Topology
Information Perspective

Decoupled-GIN is more expressive than GIN/1-WL
* Challenge for GIN/1-WL: non-isomorphic regular graphs
* Benefit of decoupling: subgraphs of a reqular graph may not be regular

., Scope = 1-hop

v U L
Depth = 2
o gr,
Example 3-regular graph where Decoupled-GIN can distinguish u and v

GIN cannot distinguish u and v



Architecture: Subgraph Extraction

Define scope G| by extracting subgraphs around v
General approaches to preserve neighborhood characteristics

Heuristic based Model based Learning based

Example heuristic-based extraction function
* |dentify important neighbors by Personalized PageRank (PPR) scores

1. Compute PPR score with target v as the root node
2. Take B neighbors MN; with top PPR scores

3. Construct node-induced subgraph Gp,; from N,




Architecture: READOUT & Ensemble

READOUT for node-& link-level tasks

* Two L-hop neighbors may only talk to
each other after 2L layers

* Deep GNN on a shallow subgraph:
each node of G, sees the complete

information of G,

* READOUT all embeddings of G,
nodes as the final embedding of v

Ensemble of different subgraphs

 Different graph metrics captures
different neighbor importance

* Design a single complicated subgraph
extraction function?

* Ensemble multiple simple subgraph
extraction functions

* e.g., [L-hop] + [PPR]



Architecture: Full Picture

GNN message passing

READOUT

— ——

Ensemble

GNN message passing

READOUT
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Evaluation: Setup

Datasets 7 graphs (up to 111M nodes)
inductive & transductive
Backbone models 5 aggregation functions & residue connection
Tasks node classification & link prediction
Training of baselines full batch & GraphSAINT minibatch
Training of proposed minibatch of independently constructed Gy

Practical design: shaDow-GNN (Decoupled GNN on shallow subgraphs)
* Scope: based on 2-hop / PPR (top 200 nodes)

e Depth: 3- / 5-layer



Evaluation: Neighborhood Composition

How many neighbors are € hops

away from the target node? - 4-layer GNN L-layer SHADOW (PPR)
o
S 1
* Scope of normal GNN g 08 s §
o Y —
* Dominated by distant neighbors g 0.6 B/ —>
* Size grows rapidly S 8-; H/->
< 0.
* Scope of shaDow-GNN 3 0 M=y
: : S ol o = QE8 588
* Consists of nearby neighbors S ST o K9S SECRCEE TR
. . o —~ O © T © —~ O © T 0
* Size is small regardless of number e By o & e o &
of layers (< 200 neighbors) < - g - ‘E
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Evaluation: Baseline Comparisons

° Decoup“ng improves Method Lavers Flickr Reddit Yelp ogbn-arxiv ogbn-products
accuracy at | ower Accuracy Cost Accuracy Cost F1-micro Cost Accuracy Cost Accuracy Cost
: 3 0.5159+0.0017 2EO0  0.9532-£0.0003 6E1  0.4028+0.0019 2E1  0.7170+ ( 0026 1E1 0.7567+0.0018 5EO
computation cost GON 5 05217+00016 2E2 0.9495+00012 1E3 0OM 1E3  0.7186:0.0017 1E3 0OM 9E2
. . GCN 3 0.5155+0.0027 2B0  0.9523-£0.0003 6E1  0.5110+0.0012 2E1 0.7093: ).0()( 3 1E1  0.8003+0.0024 5EO
° Decoupl INg IS a + GraphSAINT-RW 5 0.5165+0.0026 2E2  0.9523+0.0012 1E3 0.5012+0.0021 1E3  0.7039+0.0020 1E3 0.7992+0.0021 9E2
general design SHADOW-GCN 3 0.5262+0.0018 (1)  0.9581+0.0004 (1)  0.5255+0.00 (1) 0.7192+0.0025 (@) 0.7778+0.0030 (1)
.. . +PPR 5 0.5270-+0.0024 1EO0  0.9583--0.0002 1E0  0.5272+0. 0()1 § 2E0 0.7207+00030 2E0 0.7844+00029 2EO
principle applicable to
. GraphSAGE 3 0.5140+0.0014 3E0  0.9653+ () 0002  5E1  0.6178+0.0033 2E1  0.7192+ () 0027 1E1  0.7858+0.0013 4EO
various backbones p 5 05154400052 2E2 0.9626+00004 1E3 0OM JE3  0.7193+0.0037 1E3 0OM 1E3
GraphSAGE 3 0.5176+0.0032  3EO0 0.9671,( ).0003  SE1  0.6453+0.0011 2El1 0.7107,().( 003 1E1  0.7923+0.0023 4EQ
° Su bgraph extractlon + GraphSAINT-RW 5 0.5201+0.0032  2E2 0.9670+0.0010 1E3 0.6394+0.0003 2E3 0.7013-+0.0021 1E3  0.7964-+0.0022 1E3
al Orithms are SHADOW-SAGE 3 0.5288-+0. 0)14 1EO0  0.9660-+0.0003 1E0  0.6493-+-0.000 1IEO  0.7163+0.0012 1E0 0.7993+0.0012 1EO
. g + 2-hop 5 0.5338+0. () 2E0  0.9661+0.0002 2E0  0.6503+ 0 ()()()l 2E0 0. 71834) ( ()12 2E0  0.8014+0.0020  2EO
important SHADOW-SAGE 305344400028 (1) 0.9693:00002 (1)  0.6512:00002 (1)  0.7234:00032 (1) 0794500021 (1)
+ PPR 5 0.5424 +0. 0)’\ 2E0  0.9691+0.0003 2E0  0.6502--0.00( 2E0  0.7255+0.0013  2E0 0.8043-+0.0026 2EOQ
GAT 3 0.5070-+0.0032  2E1 OOM 3E2 OOM 2E2  0.7201+0.0011 1E2 OOM 3E1
5 0.5164+0.0033 2E2 OOM 2E3 OOM 2E3 OOM 3E3 OOM 2E3
GAT 3 0.5225+0.0053  2E1  0.9671+0.0003 3E2  0.6459+0.0002 2E2 0.6977+0.0003 1E2 0.8027+0.0028 3El1
+ GraphSAINT-RW 5 0.5153+0.0034 2E2  0.9651-£0.0024 2E3  0.6478+0.0012 2E3  0.6954+0.0013 3E3  0.7990+0.0072 2E3
SHADOW-GAT 3 0.5383+0.0032 (1) 0.9703+ () 1)  0.6549-+:0.0002 (1) 0.7243+0.0011 (1) 0.8014+0.0012 (1)
+PPR 5 0.5342+0.0023  2E0  0.9710-+ o() )\ 2E0  0.6537+0.0004 2E0  0.7283--0.0027 2E0 0.8094-+0.0034 2E0
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Evaluation: Scaling to 100M-Node Graph

Table 2: Leaderboard comparison on papers100M

OGB Leaderboard comparison

Method Test accuracy Val accuracy  Neigh size
* H igher accuracy GraphSAGE+incep  0.6707+0.0017  0.7032+0.0011 4E5
SIGN-XL 0.6606+0.0019  0.6984-+0.0006 > 4ES5
e Orders of magnitude smaller SGC 0.6329+0.0019  0.6648-+0.0020 > 4E5
. . SHADOW-GAT,yy  0.6681+0.0016 0.7019+0.0011 2E2
neighborhood size SHADOW-GATs  0.6710-00015 0.7067-00012  3E2
Memo ry consum pt ion Memory consumption of the ogbn-papers100M leaderboard methods
Method CPU RAM  GPU memory
. .
Lowest in both CPU and GPU GraphSAGE+incep _ 80GB Y
. . SIGN-XL >682GB 4GB
* Train & inference the 100M graph on a SGC 2137GB 1AGE

low-end server SHADOW-GAT S0GB 4GB
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Conclusion

General design principle to decouple the depth & scope of GNNs
* Theoretical benefits in expressivity & scalability
e Empirical performance gain in accuracy & cost

* Flexibility w.r.t. GNN architecture, subgraph extraction algorithms &
learning tasks

Public implementations
e Official code:
https://github.com/facebookresearch/shaDow GNN

* PyG version:

https://pytorch-
geometric.readthedocs.io/en/2.0.0/modules/loader.htm|?#torch geometric.loader.ShaDowKHopSampler
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Thank youl!



