

Decoupling the Depth and Scope of Graph Neural Networks

Hanqing Zeng^{1,3}, Muhan Zhang², Yinglong Xia³, Ajitesh Srivastava¹, Andrey Malevich³, Rajgopal Kannan⁴, Viktor Prasanna¹, Long Jin³, Ren Chen³

1. USC

2. PKU

3. Facebook Al

4. US-ARL

NeurIPS 2021

https://github.com/facebookresearch/shaDow GNN

Outline

- Background
- Depth-scope decoupling
- Theoretical justifications
- Architecture designs
- Evaluation
- Conclusion

Background: Graph Neural Networks

Graph representation learning

Message passing in GNNs

- Scope: from what neighbors?
- **Depth**: by how many iterations / layers?

Scalability & Expressivity Challenges

GNN designs by default (on large scale graphs):

Neighborhood explosion $\sim d^L$

Dilemma in deep GNN: scalability-expressivity tradeoff

- Depth is important: Experience from general deep learning
- Depth is expensive: Observation from graph message passing
- Depth can cause training challenges: Oversmoothing in GCN

Solution: Don't forget the scope!

Depth-Scope Decoupling

Define *scope* independent of *depth*

- Intuitions
 - Some neighbors are irrelevant → no need to pass their messages
 - Some neighbors are extra important → worth passing their messages many times
- Example: Deep (L'-layer) GNN on shallow (L-hop) subgraph

Algorithm: generate embedding for a target node v of the full graph $\mathcal G$

- 1. Extract a subgraph $\mathcal{G}_{[v]}$ around v
- 2. for round i=1 to L':

 Perform message passing along all edges in $\mathcal{G}_{[v]}$
- 3. Take v's embedding from all node embeddings of $\mathcal{G}_{[v]}$

Depth-Scope Decoupling

Interpretation

Scope Depth is a property of the

Alternative view on the input graph **Observed** large graph Union of latent small graphs

Enlarging the GNN design space

Theoretical Justifications: Overview

Decoupling improves GNN expressive power, from the perspectives of

- Graph signal processing: decoupled-GCN avoids oversmoothing
- Function approximator: decoupled-SAGE learns some target function
- Topological information: decoupled-GIN exceeds 1-WL test

Decoupling improves GNN scalability

- Deep model + large graph ≠ Exploding scope
- With fixed-size scope, complexity is linear with the model depth

Theoretical Justification: Graph Signal Processing Perspective

Oversmoothing of GCN

- Each GCN layer smooths features of
 GCN layers only smooths the direct neighbors
- For $u \neq v$, their scopes are both the For $u \neq v$, their scopes can be full graph \mathcal{G}
- Many GCN layers smooths features of the full graph G

Non-smoothing of decoupled-GCN

- features within $\mathcal{G}_{[v]}$
- different $\mathcal{G}_{[u]} \neq \mathcal{G}_{[v]}$
- Smoothing different set of features produces distinctive embeddings

Theoretical Justification: Function Approximator Perspective

Decoupled-SAGE is more expressive than GraphSAGE

Consider neighborhood \mathcal{G}' & function τ for linear comb. of \mathcal{G}' features

- GraphSAGE cannot approximate τ well, even if \mathcal{G}' is L-hop neighborhood
- Decoupled-SAGE can approximate au where

Scope
$$\mathcal{G}_{[v]} = \mathcal{G}'$$

Depth reduces the error exponentially

Theoretical Justification: Topology Information Perspective

Decoupled-GIN is more expressive than GIN/1-WL

- Challenge for GIN/1-WL: non-isomorphic regular graphs
- Benefit of decoupling: subgraphs of a regular graph may not be regular

Example 3-regular graph where GIN cannot distinguish u and v

Decoupled-GIN can distinguish u and v

Architecture: Subgraph Extraction

Define scope G[v] by extracting subgraphs around vGeneral approaches to preserve neighborhood characteristics

Heuristic based

Model based

Learning based

Example heuristic-based extraction function

- Identify important neighbors by Personalized PageRank (PPR) scores
 - 1. Compute PPR score with target v as the root node
 - 2. Take B neighbors $\mathcal{N}_{[v]}$ with top PPR scores
 - 3. Construct node-induced subgraph $\mathcal{G}_{[v]}$ from $\mathcal{N}_{[v]}$

Architecture: READOUT & Ensemble

READOUT for node-& link-level tasks

- Two L-hop neighbors may only talk to each other after 2L layers
- Deep GNN on a shallow subgraph: each node of $\mathcal{G}_{[v]}$ sees the complete information of $\mathcal{G}_{[v]}$
- READOUT all embeddings of $\mathcal{G}_{[v]}$ nodes as the final embedding of v

Ensemble of different subgraphs

- Different graph metrics captures different neighbor importance
- Design a single complicated subgraph extraction function?
- Ensemble multiple simple subgraph extraction functions
 - e.g., [*L*-hop] + [PPR]

Architecture: Full Picture

Evaluation: Setup

Datasets 7 graphs (up to 111M nodes)

inductive & transductive

Backbone models 5 aggregation functions & residue connection

Tasks node classification & link prediction

Training of baselines full batch & GraphSAINT minibatch

Training of proposed minibatch of independently constructed $\mathcal{G}_{[v]}$

Practical design: shaDow-GNN (Decoupled GNN on shallow subgraphs)

Scope: based on 2-hop / PPR (top 200 nodes)

• Depth: 3- / 5-layer

Evaluation: Neighborhood Composition

How many neighbors are ℓ hops away from the target node?

- Scope of normal GNN
 - Dominated by distant neighbors
 - Size grows rapidly
- Scope of shaDow-GNN
 - Consists of nearby neighbors
 - Size is small regardless of number of layers (< 200 neighbors)

Evaluation: Baseline Comparisons

- Decoupling improves accuracy at lower computation cost
- Decoupling is a general design principle applicable to various backbones
- Subgraph extraction algorithms are important

Method	Layers	Flickr		Reddit		Yelp		ogbn-arxiv		ogbn-products	
		Accuracy	Cost	Accuracy	Cost	F1-micro	Cost	Accuracy	Cost	Accuracy	Cost
GCN GCN + GraphSAINT-RW	3 5 3 5	$\begin{array}{c} 0.5159 \pm 0.0017 \\ 0.5217 \pm 0.0016 \\ 0.5155 \pm 0.0027 \\ 0.5165 \pm 0.0026 \end{array}$	2E0 2E2 2E0 2E2	$\begin{array}{c} 0.9532 \!\pm\! 0.0003 \\ 0.9495 \!\pm\! 0.0012 \\ 0.9523 \!\pm\! 0.0003 \\ 0.9523 \!\pm\! 0.0012 \end{array}$	6E1 1E3 6E1 1E3	$\begin{array}{c} 0.4028 \pm 0.0019 \\ \text{OOM} \\ 0.5110 \pm 0.0012 \\ 0.5012 \pm 0.0021 \end{array}$	2E1 1E3 2E1 1E3	$\begin{array}{c} 0.7170 \pm 0.0026 \\ 0.7186 \pm 0.0017 \\ 0.7093 \pm 0.0003 \\ 0.7039 \pm 0.0020 \end{array}$	1E1 1E3 1E1 1E3	0.7567±0.0018 OOM 0.8003±0.0024 0.7992±0.0021	5E0 9E2 5E0 9E2
SHADOW-GCN +PPR	3 5	0.5262±0.0018 0.5270±0.0024	(1) 1E0	0.9581±0.0004 0.9583 ±0.0002	(1) 1E0	0.5255 ± 0.0012 0.5272 ± 0.0018	(1) 2E0	0.7192 ± 0.0025 0.7207 ± 0.0030	(1) 2E0	$\begin{array}{c} 0.7778 \pm 0.0030 \\ 0.7844 \pm 0.0029 \end{array}$	(1) 2E0
GraphSAGE GraphSAGE + GraphSAINT-RW	3 5 3 5	$\begin{array}{c} 0.5140 \pm 0.0014 \\ 0.5154 \pm 0.0052 \\ 0.5176 \pm 0.0032 \\ 0.5201 \pm 0.0032 \end{array}$	3E0 2E2 3E0 2E2	$\begin{array}{c} 0.9653 \!\pm\! 0.0002 \\ 0.9626 \!\pm\! 0.0004 \\ 0.9671 \!\pm\! 0.0003 \\ 0.9670 \!\pm\! 0.0010 \end{array}$	5E1 1E3 5E1 1E3	$\begin{array}{c} 0.6178 {\pm} 0.0033 \\ \text{OOM} \\ 0.6453 {\pm} 0.0011 \\ 0.6394 {\pm} 0.0003 \end{array}$	2E1 2E3 2E1 2E3	$\begin{array}{c} 0.7192 {\pm} 0.0027 \\ 0.7193 {\pm} 0.0037 \\ 0.7107 {\pm} 0.0003 \\ 0.7013 {\pm} 0.0021 \end{array}$	1E1 1E3 1E1 1E3	$\begin{array}{c} 0.7858 {\pm} 0.0013 \\ \hline OOM \\ 0.7923 {\pm} 0.0023 \\ 0.7964 {\pm} 0.0022 \end{array}$	4E0 1E3 4E0 1E3
SHADOW-SAGE + 2-hop SHADOW-SAGE + PPR	3 5 3 5	0.5288±0.0014 0.5338±0.0038 0.5344±0.0028 0.5424 ±0.0025	1E0 2E0 (1) 2E0	0.9660±0.0003 0.9661±0.0002 0.9693±0.0002 0.9691±0.0003	1E0 2E0 (1) 2E0	$\begin{array}{c} \textbf{0.6493} \!\pm\! 0.0001 \\ \textbf{0.6503} \!\pm\! 0.0001 \\ \textbf{0.6512} \!\pm\! 0.0002 \\ \textbf{0.6502} \!\pm\! 0.0001 \end{array}$	1E0 2E0 (1) 2E0	$\begin{array}{c} \textbf{0.7163} \!\pm\! 0.0012 \\ \textbf{0.7183} \!\pm\! 0.0012 \\ \textbf{0.7234} \!\pm\! 0.0032 \\ \textbf{0.7255} \!\pm\! 0.0013 \end{array}$	1E0 2E0 (1) 2E0	$\begin{array}{c} 0.7993 \pm 0.0012 \\ 0.8014 \pm 0.0020 \\ 0.7945 \pm 0.0021 \\ \textbf{0.8043} \pm 0.0026 \end{array}$	1E0 2E0 (1) 2E0
GAT GAT + GraphSAINT-RW	3 5 3 5	$\begin{array}{c} 0.5070 \pm 0.0032 \\ 0.5164 \pm 0.0033 \\ 0.5225 \pm 0.0053 \\ 0.5153 \pm 0.0034 \end{array}$	2E1 2E2 2E1 2E2	OOM OOM 0.9671±0.0003 0.9651±0.0024	3E2 2E3 3E2 2E3	OOM OOM 0.6459±0.0002 0.6478±0.0012	2E2 2E3 2E2 2E3	$\begin{array}{c} 0.7201 \pm 0.0011 \\ \textbf{OOM} \\ 0.6977 \pm 0.0003 \\ 0.6954 \pm 0.0013 \end{array}$	1E2 3E3 1E2 3E3	$\begin{array}{c} \text{OOM} \\ \text{OOM} \\ 0.8027 \pm 0.0028 \\ 0.7990 \pm 0.0072 \end{array}$	3E1 2E3 3E1 2E3
SHADOW-GAT + PPR	3 5	0.5383 ±0.0032 0.5342 ±0.0023	(1) 2E0	0.9703±0.0010 0.9710 ±0.0008	(1) 2E0	0.6549 ±0.0002 0.6537±0.0004	(1) 2E0	0.7243 ± 0.0011 0.7283 ± 0.0027	(1) 2E0	0.8014±0.0012 0.8094 ±0.0034	(1) 2E0

Evaluation: Scaling to 100M-Node Graph

OGB Leaderboard comparison

- Higher accuracy
- Orders of magnitude smaller neighborhood size

Memory consumption

- Lowest in both CPU and GPU
- Train & inference the 100M graph on a low-end server

Table 2: Leaderboard comparison on papers 100M

Method	Test accuracy	Val accuracy	Neigh size
GraphSAGE+incep SIGN-XL SGC	$\begin{array}{c} 0.6707 {\pm} 0.0017 \\ 0.6606 {\pm} 0.0019 \\ 0.6329 {\pm} 0.0019 \end{array}$	$\begin{array}{c} 0.7032 {\pm} 0.0011 \\ 0.6984 {\pm} 0.0006 \\ 0.6648 {\pm} 0.0020 \end{array}$	4E5 > 4E5 > 4E5
$\begin{array}{c} \text{SHADow-GAT}_{200} \\ \text{SHADow-GAT}_{400} \end{array}$	$\begin{array}{c} \textbf{0.6681} \!\pm\! 0.0016 \\ \textbf{0.6710} \!\pm\! 0.0015 \end{array}$	$\begin{array}{c} \textbf{0.7019} {\pm} 0.0011 \\ \textbf{0.7067} {\pm} 0.0012 \end{array}$	2E2 3E2

Memory consumption of the ogbn-papers100M leaderboard methods

Method	CPU RAM	GPU memory
GraphSAGE+incep SIGN-XL SGC	80GB >682GB >137GB	16GB 4GB 4GB
SHADOW-GAT	80GB	4GB

Conclusion

General design principle to decouple the depth & scope of GNNs

- Theoretical benefits in expressivity & scalability
- Empirical performance gain in accuracy & cost
- Flexibility w.r.t. GNN architecture, subgraph extraction algorithms & learning tasks

Public implementations

Official code:

https://github.com/facebookresearch/shaDow GNN

• PyG version:

https://pytorch-

geometric.readthedocs.io/en/2.0.0/modules/loader.html?#torch_geometric.loader.ShaDowKHopSampler

Thank you!