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Multi-task Linear Regression ﬂﬁ

Y, =LX; +E; Spatio-temporal generative model

Y, € RMxT for g =1,...,G, G:#sample blocks or tasks

Xz € RNxT M:#measurements or observations, T:#Samples,
E; c RN*T N:#£coefficients or source components,

L € RMxN forward matrix (known): maps X, to Y,

Goal: Estimate {Xg}_; given L and {Y,}5_;:
» Inverse problem in physics

> Multiple measurement vector (MMV) recovery problem in signal processing

=
3 -

Temperature monitoring of Temperature monitoring of EEG/MEG Source Localization fMRI data analysis
climate [S. Beirle et al. 2003] CPU/GPU []. Ranieri et al. 2012] [H. Janati et al. 2020] [M. B. Cai, et al.2020]

z=1
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Hierarchical Bayesian Learning ﬂﬁ

Spatio-temporal dynamics of model parameters and noise are modeled to
have Kronecker product covariance structure.

Probabilistic graphical model:

Spatial Temporal Spatial
Covariance of Covariance Covariance
Noise Besl
. =A®B - ¥ =T®B

p(vee(Xg )| T, B) ~ N(0, )
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Hierarchical Bayesian Inference and Type-Il Loss ﬂﬁ

Posterior source distribution: p(vec(X;)|vec(Y;), T, A,B) ~ N(Xg, X)
with

Xg = vec()_(;) = EODTf);lyg

Sy = o — XD, 1DX,

$,=%,®B

¥, =LTL" +A,
where D=L ® I7.

I', A, B are learned by minimizing the negative log marginal likelihood
(Type-Il) loss, —log p(Y|T, A, B).

G
1 _ _
Type — 11 Loss : Liron(T, A, B) = T log [Zy| + M log|B| + = § (2, 'Y,B7'Y,)
g=1
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Challenges ﬂﬁ

G
Type — 11 Loss : Ligon(T, A, B) = T log |Zy| + Mlog |B| + é > (2B Y

g=1
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Challenges ﬂﬁ

G
Type — 11 Loss : Ligon(T, A, B) = T log |Zy| + Mlog |B| + é > (2B Y

g=1

© Non-convex Type-ll ML loss function: non-trivial to solve.

convex function non-convex function
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Challenges ﬂﬁ

G
Type — 11 Loss : Ligon(T, A, B) = T log |Zy| + Mlog |B| + é > (2B Y

g=1

© Non-convex Type-ll ML loss function: non-trivial to solve.

© Most contributions in the literature neglect the temporal structure
and are based on MAP (Type-I) estimation.

© A few works that model the temporal dynamics often involve a
computationally demanding inference scheme mostly based on
expectation-maximization (EM).
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Our Contributions ﬂﬁ

» Derive novel Type-Il algorithms that automatically learn the
temporal structure

@ Exploit the intrinsic Riemannian geometry of temporal
autocovariance matrices.

@ For stationary dynamics described by Toeplitz matrices, we
employ the theory of circulant embeddings.

» Devise an efficient inference based on majorization-minimization
optimization with guaranteed convergence properties.

To this end, we present a series of theorems resulting in a novel and
efficient hierarchical Bayesian inference for spatio-temporal multi-task
regression models.
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Convex Majorizing Functions ﬂﬁ

Theorem (Majorizing function for temporal covariance update)

Optimizing Lion(T', A, B) with respect to B is equivalent to optimizing the
following convex surrogate function, which majorizes Lyon(T', A, B):
Lione(TX, AX,B) = tr ((B¥)7'B) + tr(M{;,.B™Y),

G =1
where M{‘,(ime = % Zg:l Y;— (25) Yg.

Concave

G
Lieon(T, A, B) = Tlog | £, + Mlog |B| + % S (5 Y8 Y]

g=1
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G =1
where M{‘,(ime = % Zg:l Y;— (25) Yg.

log|B| tr (B*) 'B

Hyperplane

Concave

Concave

G
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Convex Majorizing Functions ﬂE

Theorem (Majorizing function for temporal covariance update)

Optimizing Liron(T', A, B) with respect to B is equivalent to optimizing the
following convex surrogate function, which majorizes Lyon(T', A, B):

Leme(TX, AX,B) = tr ((BY)7'B) + tr(M{, B™),

G ~1
where Mg, ‘= 7ic >t Y] () Y,

Theorem (Majorizing function for spatial covariance update)

Let H = diag(h), h = [y1,...,9n,0%,...,0%]", ® :=[L,1], and £, = PHP .
Then, optimizing Lon(T, A, B) with respect to H is equivalent to minimizing the
following convex surrogate function, which majorizes Lyon(T', A, B):

LEwe(T, A, BX) = LBF(H,BX) = tr (@7 ()) '@H) +tr (M&H™) |

where M§y := H*® T (ZX) 1ML (25) 1 @HK,

k 1 G ky—1yT
Mspace — TG Zg:l YE(B ) Yg .
V.
Ali Hashemi ST Regression with HB Inference NeurlPS 2021 7/14




Convex Majorizing Functions ﬂE

Theorem (Majorizing function for temporal covariance update)

Optimizing Liron(T', A, B) with respect to B is equivalent to optimizing the
following convex surrogate function, which majorizes Lyon(T', A, B):

Leme(TX, AX,B) = tr ((BY)7'B) + tr(M{, B™),

G ~1
where M§,.. ‘= 7z >t Y] () Y,

Theorem (Majorizing function for spatial covariance update)

Let H = diag(h), h = [y1,...,9n,0%,...,0%]", ® :=[L,1], and £, = PHP .
Then, optimizing Lon(T, A, B) with respect to H is equivalent to minimizing the
following convex surrogate function, which majorizes Lyon(T', A, B):

LEwe(T, A, BX) = LBF(H,BX) = tr (@7 ()) '@H) +tr (M&H™) |

where M§y := H*® T (ZX) 1ML (25) 1 @HK,

k o G ky—1yT
Msplce = TG Zg:l Yg(B ) Yg .

V.

ST Regression with HB Inference NeurlPS 2021 7/14




Riemannian Update on the Manifold of P.D. Matrices ﬂﬁ

Theorem (Geometric mean)

The cost function L4 (T* A¥ B) is strictly geodesically convex with respect to
the P.D. manifold and its minimum with respect to B can be attained by iterating
the following update rule until convergence:

1/2
B M« (BY)* ((B*) *M,..(B) ) (BK)”:,

which leads to a majorization-minimization (MM) algorithm with convergence
guarantees ~» Full Dugh

0.

Loss function
0.5

- - -Majorizing function

Tangent Space o

[ P. D. Manifold

Geometric Mean
! 0.35

03]
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Riemannian Update on the Manifold of P.D. Matrices ﬂﬁ

Theorem (Geometric mean)

The cost function L4 (T*, A¥  B) is strictly geodesically convex with respect to
the P.D. manifold and its minimum with respect to B can be attained by iterating
the following update rule until convergence:

B o (B4 (B4 M, (89 ) (897,

time

which leads to a majorization-minimization (MM) algorithm with convergence

guarantees ~> Full Dugh

Ground Truth Full Dugh
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Riemannian Update on the Manifold of P.D. Matrices ﬂﬁ

Theorem (Geometric mean)

The cost function L42¢(T* A¥  B) is strictly geodesically convex with respect to
the P.D. manifold and its minimum with respect to B can be attained by iterating
the following update rule until convergence:

time

1/2
Bk+1 — (Bk)l/z ((Bk)*l/sz (Bk)*l/z) (Bk)l/z ,

which leads to a majorization-minimization (MM) algorithm with convergence

guarantees ~~ Full Dugh
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Riemannian Update for Toeplitz Matrices ﬂﬁ

Theorem (Temporal covariance update using circulant embedding)

Let L£time(T*, Ak, B) is constrained to the set of real-valued positive-definite
Toeplitz matrices, B € B : B = QPQ", where P = diag(p) € RXL with L > T
be the circulant embedding of B. Then the resulting constrained loss function is
convex in p, and its minimum with respect to p can be obtained by iterating the
following closed-form update rule until convergence:

sk
pktl %—’ forl=1,..., L, where
/ ok

]

g := diag(P“Q"(B) ' M{;,.(B") ' QP¥)
7 := diag(Q"”(B*)7'Q)

Ground Truth Thin Dugh
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Riemannian Update for Toeplitz Matrices ﬂﬁ

Theorem (Temporal covariance update using circulant embedding)

| 5k
plk+1<_ %forlzl,...,L,Where
|

= diag(P*Q"(B) MY, (B4) 1QP¥)
= diag(Q"(B*) Q)

o>

N>

Theorem (Spatial covariance with diagonal structure)

The cost function L£2°¢(H, B¥) is convex in h, and its minimum with respect to

h can be obtained according to the following closed-form update rule:

K
hEHL g_,k fori=1,...,N+ M where

g := diag(M§y)
z = diag(® ' (Zy) @)

v
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Full and Thin Dugh

Combining this theoretical work, we developed a novel algorithm called “Dugh”
for joint estimation of spatial and temporal covariances of source and noise.

Algorithm 1: Full Dugh

Input: The lead feld matrix L € RM*N and G trials of measurement vectors { Y, }.
Y, €
Result: Estimates of the source and noise variances h = [ 3] the temporal
covariance B, and the posterior mean {%,}{_., and covariance Ex of the sources.
1 Choose a random initial value for B as well as h = [31, ..., 7x, 0%, .., 0%,]T. and construct
H = diag(h) and T = diag([:

2 Construct the augmented lead field
3 Calculate the lead field D = L ® Iy for vectorized sources.

4 Calculate the prior spatio-temporal covariance for the sources as X = T' ® B.
s Caleulate the spatial statistical covariance X, = $H®’
6 Calculate the spatio-temporal statistical covariance 3, =%, ®B.
7 Tniti

repeat
s | Calculate the posterior mean as %, = £oD " 5y, for g

Yo = vec (Y]) € RMTx1

5 | Calculate M. and update B based on Riemannian update on the manifold of PID. matrices
10 | Calculate MKy, and update H.
n | kek+l

~ . where

., G, where

e+l

— K[|} < cork = hpa
- %D 3;' DX,

until stopping condition is satisfied: ||
12 Calculate the posterior covariance as Sy = So

Algorithm 2: Thin Dugh
Input : The lead held matrix L € RM*¥ and G trials of measurement vectors { Y, }_.;, where
Y, eRM
Result: E;um.nm of the source and noise wmmm h= [
covariance B, and the posterior mean {%, }§.
1 Choose a random initial value for p as well as h, and construct H = diag(h) and P = diag(p).
2 Construct B = QPQ™, where Q = [Ty, U]F, with L = 2T + 1 and F1, as DFT.
3 Construct the augmented lead field &
4 Caleulate the prior spatio-temporal covariance “or the sources as o = T @ B
s Calculate the statistical covariance £y = $H®T.
& Calculate the spatio-temporal stati covariance By = B, @ B.
7 nitialize k
repeat
s | Calculate the posterior mean efficiently as
LTLT = U DyU] and [TT);,, =
s | Calculate M, and update B based on Riemannian update for Toeplitz matrices using
circulant embedding.
1 | Calculate MYy, and update H.
—k+1

. the temporal

tr (QP (Lo QY] Uy )(UTLrT)).wmm
forl= ,Land m=

T
Fpid

until stopping condition is satisfied: ||x*+*
12 Calculate the posterior covariance as Sy =

=R < cork =l

%o - %D .

Full Dugh: Temporal Covariance Update

BHHL  (BH): ((BY) M, (B4) ) (B2

ST Regression with HB Inference

Thin Dugh: Temporal Covariance Update

5k
B =QPQ", | ELfor /=1
Zj

g = diag(P*Q"(B*)™'M
2 := diag(Q"(BX)7'Q)

me(BX)7'QPY)
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Electromagnetic Brain Source Imaging (BSI) ﬂﬁ

Electro-/Magnetoencephalography (E/MEG): A non-invasive brain
imaging technique with high temporal resolution (order of ms).

X L Y
&

o\
@

“Source Space Sensor Space
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Electromagnetic Brain Source Imaging (BSI) ﬂﬁ

X L

Source Space Sensor Space

lll-posed inverse problem: (#Sensors= 32 ~ 256 vs #Sources= 10% ~ 10%)

X* = argmin ||Y — LX||?_- + A R(X)
X N——
Likelihood:p(Y|X) Prior:p(X)

@ Type-l MAP methods: #1, 2, £1,»-norms, sparsity in transformed domains (Gabor).

[Pascual-Marqui et al., '07][Haufe et al, ‘08, '11][Gramfort et al., '12, '13][Castafio-Candamil et al., '15]

@ Type-Il ML approaches: different sparse Bayesian learning (SBL) variants ignoring the
temporal dynamics. [Wipf et al., '09, '10, '11][Owen et al, '12][Cai et al., '17, '21]
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Numerical Results ﬂﬁ

Conclusion |: Dugh consistently outperforms benchmark methods in the BSI
literature according to all evaluation metrics.
—eLORETA —S-FLEX — Champagnhe — Thin Dugh
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Real Data Analysis of AEF and VEF ﬂﬁ

Conclusion II: Dugh can provide accurate reconstruction even under extreme SNR
conditions - superior to benchmarks.

eLORETA MCE Thin Dugh Full Dugh

5 trials

VEF
4
©
[}
a —
“
<
g’ 100 “r':ﬁ.l()m!] 200 250
[a]
X
©
[
o
°
|4
N
00 200 250

50
Time(ms)
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