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BiGAN repr.

true data distr. BiGAN data distr.

Introduction

• Motivation from deep generative models:
Model both 𝑝 𝑥 𝑧 for generation, and 𝑞 𝑧 𝑥 for representation.
Define their common joint by a prior 𝑝 𝑧 : 𝑝 𝑥, 𝑧 ≔ 𝑝 𝑧 𝑝 𝑥 𝑧 .

• Problems of Gaussian prior:

• Manifold mismatch: 𝑝 𝑥 has a simply connected support as 𝑝 𝑧
⟹ restricted expressiveness.

• Posterior collapse: 𝑞 𝑧 𝑥 is squeezed to the origin
⟹ degraded representativeness.

• Using an informative prior:

Domain knowledge on the prior is even more scarce than on the conditional models.
(e.g., shift/rotation invariance of 𝑞 𝑧 𝑥 for image representation (CNN/SphereNet))

• Learning a prior model: additional modeling and training cost.

The problem:
Whether or when can we model a joint distribution 𝑝 𝑥, 𝑧
only using two conditional models 𝑝 𝑥|𝑧 and 𝑞 𝑧|𝑥 that form a cycle? 𝑝 𝑧 𝑧

𝑥

𝑝𝜃(𝑥|𝑧)
𝑞𝜙 𝑧 𝑥

VAE, BiGAN, 
flow-based, 
diffusion-based
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CyGen repr.

true data distr. CyGen data distr.

Introduction

• Key sub-problems:
• Compatibility (existence): When the two conditionals can be induced from a common joint.

• Determinacy (uniqueness): When the two compatible conditionals uniquely determine a joint.

• In this work,
• Theory: compatibility criteria (equivalent conditions)

and sufficient conditions for determinacy.

• Operable and self-contained.

• Unify continuous and discrete cases.

• CyGen: Cyclic-conditional Generative model.

• Methods for enforcing compatibility and determinacy,
fitting data, and data generation.

The problem:
Whether or when can we model a joint distribution 𝑝 𝑥, 𝑧
only using two conditional models 𝑝 𝑥|𝑧 and 𝑞 𝑧|𝑥 that form a cycle?
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Related Work: Modeling
• Cyclic conditional models
• Dependency networks [Heckerman’00]:

No latent variable (so compatibility is not a problem). Gibbs sampling for the joint.

• Denoising auto-encoders (DAEs) [Vincent’08]: min𝔼𝑝∗ 𝑥 𝑞 𝑧 𝑥 log 𝑝 𝑥 𝑧 .

• Variants: Uncertainty AE [Grover’19], Walkback [Bengio’13], GibbsNet [Lamb’17].

• The loss is not suitable for optimizing 𝑞 𝑧 𝑥 (mode-collapse, weakens determinacy).

• Inefficient generation and unstable training by Gibbs sampling.

• Dual learning [He’16; Xia’17a,b; Lin’19], Disco[Kim’17]/Cycle[Zhu’17]/Dual[Yi’17]-GAN:

• Not for generative modeling (in fact, they lack determinacy).

• No latent variable, unpaired data.
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Related Work: Theory
• Compatibility
• The classical condition [Arnold’89,01,12] is not necessary.
• The equivalent condition [Berti’14] is still existential.
• Results from DAE [Bengio’13,14; Lamb’17; Grover’19]: not self-contained (𝑝∗ 𝑥 is required).
• Cycle-consistency loss [Kim’17; Zhu’17; Yi’17; Lin’19]: only for Dirac (deterministic) conditionals.

• Determinacy
• Determining 𝑝 𝑥 through score matching (SM):

DAE ⟺ denoising SM (Gaussian RBM) [Vincent’11].
DAE ⟺ SM (Gaussian decoder noise and infinitesimal Gaussian corruption) [Alain'14].

• Determining 𝑝 𝑥, 𝑧 through Gibbs chain:
• The chain is ergodic thus has a unique stationary distr. 𝜋 𝑥, 𝑧 under a global [Bengio’13; 

Lamb’17; Grover’19] or local [Bengio’13] shared support condition.
• When incompatible, 𝜋 𝑧|𝑥 ≠ 𝑞 𝑧 𝑥 or 𝜋 𝑥 𝑧 ≠ 𝑝 𝑥 𝑧 [Heckerman’00, Bengio’13].
• No explicit expression. Slow convergence for generation. Unstable training (Walkback, GibbsNet).

• The classical description [Arnold’12]: restricted to product support; Dirac case not covered.
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Theory
Setup
• Measure spaces for random variables 𝑥 and 𝑧: 𝕏, , 𝜉 and ℤ, , 𝜁 .

• Product measure space 𝕏 × ℤ, ⊗ , 𝜉 ⊗ 𝜁 .

• For 𝒲 ∈ ⊗ , define

its slice at 𝑧: 𝒲𝑧 ≔ 𝑥 ∣ 𝑥, 𝑧 ∈ 𝒲 ,
its projection onto ℤ: 𝒲ℤ ≔ 𝑧 ∣ ∃𝑥 s. t. 𝑥, 𝑧 ∈ 𝒲 .

• For a joint distribution 𝜋, define

its marginal onto ℤ: 𝜋ℤ 𝒵 ≔ 𝜋 𝕏 × 𝒵 ,

its conditional 𝜋 𝒳 𝑧 ≔
d𝜋 𝒳×⋅

d𝜋ℤ ⋅
𝑧 (this is only 𝝅ℤ-a.s. unique).

• Define “=𝜉”, “⊆𝜉” as the extensions of “=”, “⊆” up to a set of 𝜉-measure-zero.
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Theory
Absolutely continuous case
• For any 𝑧 and 𝑥, 𝜇 ⋅ 𝑧 and 𝜈 ⋅ 𝑥 are either abs. cont. (w.r.t 𝜉 and 𝜁) or zero.

• Represented by density functions 𝑝 𝑥 𝑧 and 𝑞 𝑧 𝑥 .

• Incl.: “smooth” distr. on Euclidean spaces / manifolds, all distr. on finite/discrete spaces.

• Incl.: VAEs, diffusion-based models.
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Theory
Absolutely continuous case

• Compatibility

• First intuition: the ratio 
𝑝 𝑥 𝑧
𝑞 𝑧 𝑥

=
𝑝 𝑥,𝑧 /𝑝 𝑧

𝑝 𝑥,𝑧 /𝑝 𝑥
= 𝑝 𝑥

1

𝑝 𝑧
factorizes.

• The classical condition [Arnold’89,01] requires the factorization over 𝕏 × ℤ:
It is not necessary! Because 𝑝 𝑥 𝑧 is uncontrolled outside the support of 𝜋ℤ.

For identifying a proper region for the factorization,

• Definition: A set 𝒮 is said to be a 𝜉 ⊗ 𝜁-complete component
of 𝒲 ∈ ⊗ , if 𝒮# ∩𝒲 =𝜉⊗𝜁 𝒮, where
𝒮# ≔ 𝒮𝕏 × ℤ ∪ 𝕏 × 𝒮ℤ is the stretch of 𝒮.

• Complete under stretching and intersecting with 𝒲: so that
integral on 𝒮𝑧 = integral on 𝒲𝑧, for a.e. 𝑧 ∈ 𝒮ℤ.

• Conditionals are a.s. determined on 𝒮# if 𝒮 is the support
of the joint.

Chang Liu (MSRA)

ℤ

𝕏

𝒮ℤ

𝒮𝕏

𝒲

𝒮

𝒮#
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Theory
Absolutely continuous case
• Theorem (compatibility criterion, abs. cont.). 𝑝 𝑥 𝑧 and 𝑞 𝑧 𝑥 are compatible, if and only if

there exists a set 𝒮 (called complete support) such that:

(i) 𝒮 is a 𝜉 ⊗ 𝜁-complete component of both
𝒲𝑝,𝑞 ≔ ⊇𝑧:𝒫𝑧ڂ

𝜉𝒬𝑧
𝒫𝑧 × 𝑧 and 𝒲𝑞,𝑝 ≔ 𝑥:𝒬𝑥⊆𝜁𝒫𝑥ڂ

𝑥 × 𝒬𝑥,

where 𝒫𝑧 ≔ 𝑥 ∣ 𝑝 𝑥 𝑧 > 0 , 𝒫𝑥 ≔ 𝑧 ∣ 𝑝 𝑥 𝑧 > 0 ,

and 𝒬𝑧 ≔ 𝑥 ∣ 𝑞 𝑧 𝑥 > 0 , 𝒬𝑥 ≔ 𝑧 ∣ 𝑞 𝑧 𝑥 > 0 ;

(ii) 𝒮𝕏 ⊆𝜉 𝒲𝑞,𝑝
𝕏 , 𝒮ℤ ⊆𝜁 𝒲𝑝,𝑞

ℤ ;

(iii) 𝜉 ⊗ 𝜁 𝒮 > 0;

(iv) 
𝑝 𝑥 𝑧
𝑞 𝑧 𝑥

factorizes as 𝑎 𝑥 𝑏 𝑧 , 𝜉 ⊗ 𝜁-a.e. on 𝒮;

(v) 𝑎 𝑥 is 𝜉-integrable on 𝒮𝕏.

For sufficiency, 𝜋 𝒲 ≔
𝒲∩𝒮

𝑞 𝑧 𝑥 𝑎 𝑥 𝜉⊗𝜁 d𝑥d𝑧

𝒮𝕏 𝑎 𝑥 𝜉 d𝑥
,

∀𝒲 ∈ ⊗ is a compatible joint.
Chang Liu (MSRA)

ℤ

𝕏

𝑧1 ⊈ 𝒲𝑝,𝑞
ℤ 𝑧2 ⊆ 𝒲𝑝,𝑞

ℤ

𝒬𝑧1

𝒫𝑧1
⊈𝜉

𝒬𝑧2

𝒫𝑧2

⊆𝜉

𝒲𝑝,𝑞 ,

𝒲𝑞,𝑝, 𝒮

𝑞 𝑧 𝑥

𝑝 𝑥 𝑧

the first 
intuition

to make 
the ratio 
well-
defined

If 𝑧 is in the support of the joint, then 𝑝 𝑥 𝑧 determines 
the distribution on 𝕏 × 𝑧 , so 𝑞 𝑧 𝑥 should respect it 
(> 0 where 𝑝 𝑥 𝑧 is) to avoid support conflict.

makes conditionals normalized, 

since 𝒮𝑧 =
𝜉 𝒲𝑝,𝑞 𝑧

= 𝒫𝑧.

for suf-
ficiency; 
not gua-
ranteed
by (i)

often just a few candidates, 
so it is operable.
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Theory
Absolutely continuous case
• Theorem (determinacy, abs. cont.). Let 𝒮 be a complete support of compatible conditionals 
𝑝 𝑥 𝑧 and 𝑞 𝑧 𝑥 . If 𝒮𝑧 =

𝜉 𝒮𝕏 for 𝜁-a.e. 𝑧 ∈ 𝒮ℤ or 𝒮𝑥 =
𝜁 𝒮ℤ for 𝜉-a.e. 𝑥 ∈ 𝒮𝕏, then their 

compatible joint supported on 𝒮 is unique.

• Roughly means 𝒮 is “rectangular”: irreducibility of the Gibbs chain.

• The uniqueness is only possible on each complete support 𝒮.

• Corollary. If compatible conditionals 𝑝 𝑥 𝑧 and 𝑞 𝑧 𝑥 have a.e.-full supports, then their 
compatible joint on 𝕏 × ℤ is unique.

• Determinacy in the abs. cont. case is often sufficient.
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Theory
Dirac case

• 𝜇 𝒳 𝑧 = 𝛿𝑓 𝑧 𝒳 ≔ 𝕀 𝑓 𝑧 ∈ 𝒳 (𝑓: ℤ → 𝕏 is measurable; e.g., when continuous).

• Incl.: Euclidean/manifold case (no density function), and finite/discrete case (also abs. cont.).

• Incl.: GANs, flow-based models.

Compatibility:

• Theorem (compatibility criterion, Dirac). Suppose       contains
all the single-point sets. Then conditional 𝜈 ⋅ 𝑥 is compatible
with 𝜇 𝒳 𝑧 = 𝛿𝑓 𝑧 𝒳 , if and only if
there exists 𝑥0 ∈ 𝕏 s.t. 𝜈 𝑓−1 𝑥0 𝑥0 = 1.

• 𝜈 ⋅ 𝑥 is not required to concentrate on the curve for any 𝑥:
for one such 𝑥0, 𝛿 𝑥0,𝑓 𝑥0

is already a compatible joint.

• When 𝜈 ⋅ 𝑥 ≔ 𝛿𝑔 𝑥 ⋅ and compatibility is desired over a set 𝒳:

• Min the cycle-consistency loss 𝔼𝑝 𝑥 ℓ 𝑥, 𝑓 𝑔 𝑥 is sufficient (𝑝 𝑥 supported on 𝒳; ℓ a metric).

• It is also necessary if 𝑓 is invertible: flow-based models are naturally compatible.
Chang Liu (MSRA)

ℤ

𝕏

𝑥 = 𝑓 𝑧

𝑥0 𝑓−1 𝑥0
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Theory
Dirac case

Determinacy:

• On each 𝑥0 in the theorem, there is a compatible joint 𝛿 𝑥0,𝑓 𝑥0
.

• But if such an 𝑥0 is not unique, the joint is not unique on 𝕏 × ℤ.

• Determinacy in the Dirac case is usually insufficient:
Compatible Dirac conditionals only determine a curve on 𝕏 × ℤ but not a distribution on it.

• If 𝑓 𝑧 ≡ 𝑥0 is constant, then the joint is fully determined by 𝜈 ⋅ 𝑥0 .
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CyGen
• General design:

Chang Liu (MSRA)

CyGen: Cyclic Generative model

Eligibility as a generative model

Compatibility Determinacy

Usage as a generative model

Fitting Data Data Generation

• Dirac conditionals (e.g., in GANs, flow-based models) are not suitable (insufficient determinacy).
• Use abs. cont. conditionals (like VAEs), modeled by parameterized densities 𝑝𝜃 𝑥 𝑧 , 𝑞𝜙 𝑧 𝑥

with full supports.
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CyGen
• Enforcing compatibility:

𝐶 𝜃, 𝜙 ≔ 𝔼𝜌 𝑥,𝑧 ∇𝑥∇𝑧
⊤𝑟𝜃,𝜙 𝑥, 𝑧

𝐹

2
, where 𝑟𝜃,𝜙 𝑥, 𝑧 ≔ log 𝑝𝜃 𝑥 𝑧 /𝑞𝜙 𝑧 𝑥 ,

and 𝜌 𝑥, 𝑧 is an abs. cont. reference distr. supported on 𝕏 × ℤ, e.g., 𝑝∗ 𝑥 𝑞𝜙 𝑧 𝑥 .

• 𝐶 𝜃, 𝜙 = 0⟺ 𝑝𝜃 𝑥 𝑧 /𝑞𝜙 𝑧 𝑥 factorizes a.e.

• Generalizes the cycle-consistency loss to probabilistic conditionals.

• Efficient implementation by Hutchinson’s [’89] trace estimator: tr 𝐴 = 𝔼𝑝 𝜂 𝜂⊤𝐴𝜂

➔ 𝐶 𝜃, 𝜙 = 𝔼𝜌 𝑥,𝑧 𝔼𝑝 𝜂 ∇𝑧 𝜂⊤∇𝑥𝑟𝜃,𝜙 𝑥, 𝑧
2

2
.

#{derivative computation}: 𝑂 𝑑𝕏𝑑ℤ ➔ 𝑂 𝑑𝕏 + 𝑑ℤ .

• Gradient estimation for flows 𝑞𝜙 𝑧 𝑥 : 𝑧 = 𝑇𝜙 𝑒 𝑥 , 𝑒 ∼ 𝑝 𝑒 with intractable inverse:

∇𝑍 log 𝑞𝑍|𝑋 𝑇𝜙 𝑒|𝑥 |𝑥 = ∇𝑒𝑇𝜙
⊤ 𝑒|𝑥

−1
∇𝑒ℎ𝜙 𝑒, 𝑥 ,

∇𝑋 log 𝑞𝑍|𝑋 𝑇𝜙 𝑒|𝑥 |𝑥 = ∇𝑥ℎ𝜙 𝑒, 𝑥 − ∇𝑥𝑇𝜙
⊤ 𝑒|𝑥 ∇𝑍 log 𝑞𝑍|𝑋 𝑇𝜙 𝑒|𝑥 |𝑥 ,

where ℎ𝜙 𝑒, 𝑥 ≔ log 𝑞𝑍|𝑋 𝑇𝜙 𝑒|𝑥 |𝑥 .

Chang Liu (MSRA)

𝑝 𝜂 is any distr. s.t.
𝔼 𝜂 = 0, Var 𝜂 = 𝐼.
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CyGen
• Enforcing compatibility:

𝐶 𝜃, 𝜙 ≔ 𝔼𝜌 𝑥,𝑧 ∇𝑥∇𝑧
⊤𝑟𝜃,𝜙 𝑥, 𝑧

𝐹

2
, where 𝑟𝜃,𝜙 𝑥, 𝑧 ≔ log 𝑝𝜃 𝑥 𝑧 /𝑞𝜙 𝑧 𝑥 .

• Implication on Gaussian VAE 𝑝𝜃 𝑥 𝑧 = 𝒩 𝑥 𝑓𝜃 𝑧 , 𝜎𝑑
2𝐼 , 𝑞𝜙 𝑧 𝑥 = 𝒩 𝑧 𝑔𝜙 𝑥 , 𝜎𝑒

2𝐼 :

𝐶 𝜃, 𝜙 = 𝔼𝜌 𝑥,𝑧
1

𝜎𝑑
2 ∇𝑧𝑓

⊤ 𝑧
⊤
−

1

𝜎𝑒
2 ∇𝑥𝑔

⊤ 𝑥
𝐹

2

= 0⟺𝑓𝜃 𝑧 , 𝑔𝜙 𝑥 are affine.

• Meets conclusions in causality [Zhang’09; Peters’14].

• Root cause of recent observation (latent space is quite linear [Shao’18]) and analysis (latent space 

coordinates the data manifold [Dai’19], encoder learns a rescaled isometric embedding [Nakagawa’21]).

• For a nonlinear repr., use a more flexible 𝑞𝜙 𝑧 𝑥 model (e.g., Sylvester flow [VDBerg’18]).

• Relation to AE regularizations:

• Contractive AE [Rifai’11]: 𝔼𝑝∗ 𝑥 ∇𝑔⊤ 𝑥 𝐹
2 .

• Denoising AE [Rifai’11; Alain'14]: 𝔼𝑝∗ 𝑥 ∇ 𝑓 ∘ 𝑔 ⊤
𝐹
2 (Gauss. enc. noise, infinitesimal Gauss. corruption).

• “Tied weights” in AEs [Vincent’08; Rifai’11; Alain'14]: compatibility for sigmoid conditionals.
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CyGen
• Fitting data:
• Maximum Likelihood Estimator (MLE) is available:

max𝜃,𝜙 𝔼𝑝∗ 𝑥 log 𝑝𝜃,𝜙 𝑥 = 𝔼𝑝∗ 𝑥 − log𝔼𝑞𝜙 𝑧′|𝑥 1/𝑝𝜃 𝑥|𝑧′ .

• The DAE objective 𝔼
𝑝∗ 𝑥 𝑞𝜙 𝑧

′ 𝑥 log 𝑝𝜃 𝑥 𝑧′ ≥ 𝔼𝑝∗ 𝑥 log 𝑝𝜃,𝜙 𝑥 :

improper for MLE; makes 𝑞𝜙 𝑧′ 𝑥 mode-collapsed and hurts determinacy.

• CyGen final training loss: min𝜃,𝜙 𝔼𝑝∗ 𝑥 − log𝑝𝜃,𝜙 𝑥 + 𝜆 𝐶 𝜃, 𝜙 .

• Data generation: sample from the model-determined data distribution 𝑝𝜃,𝜙 𝑥 .

• Dynamics-based MCMCs:

• Converge faster than Gibbs sampling.

• Only need unnormalized 𝑝𝜃,𝜙 𝑥 , which is available: 𝑝𝜃,𝜙 𝑥 ∝
𝑝𝜃 𝑥|𝑧

𝑞𝜙 𝑧|𝑥
, ∀𝑧.

• E.g., Stochastic Gradient Langevin dynamics (SGLD):

𝑥 𝑡+1 = 𝑥 𝑡 + 𝜀∇𝑥 𝑡 log
𝑝𝜃 𝑥 𝑡 |𝑧 𝑡

𝑞𝜙 𝑧 𝑡 |𝑥 𝑡 + 2𝜀 𝜂 𝑡 , where 𝑧 𝑡 ∼ 𝑞𝜙 𝑧|𝑥 𝑡 , 𝜂 𝑡 ∼ 𝒩 0, 𝐼 .

≈ logσ𝑖=1
𝑁 exp − log 𝑝𝜃 𝑥|𝑧 𝑖 − log𝑁

𝑧 𝑖
𝑖=1

𝑁
∼ 𝑞𝜙 𝑧′|𝑥

ฐ

`logsumexp` trick for 
numerical stability
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Experiment Results: Synthetic
• Generation and Representation: manifold mismatch and posterior collapse solved.

data
DAE

(nllh = 267.6)
VAE

(nllh = 5.1)
CyGen

(nllh = -0.41)

class-wise 
aggregated 

posterior

BiGAN
(nllh = 66.1)

CyGen(PT)
(nllh = -0.41)

PreTrain as a VAE then 
mainly finetune 𝑞𝜙 𝑧 𝑥 .
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Experiment Results: Synthetic
• Incorporating knowledge into conditional models

The VAE-pretrained 𝑝𝜃 𝑥 𝑧 model encodes the knowledge:

“the prior is centered and centrosymmetric”.

Prior of CyGen Prior of CyGen(PT)Prior of VAE
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Experiment Results: Synthetic
• Comparison of data generation methods: SGLD is better and more robust to incompatibility.

After pretraining
(iter 1000)

(compt 1.6e4)

(iter 1100) (iter 1200) (iter 1300) (iter 1400) (iter 30000)

(compt 7.0e3) (compt 5.4e3) (compt 7.7e3) (compt 6.2e3) (compt 4.6e3)

ℤ-space 
SGLD

Gibbs
sampling

CyGen(PT)
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Experiment Results: Synthetic
• Necessity of compatibility

CyGen(PT) w/o 
compt. loss

After pretraining
(iter 1000)

(compt 1.6e4)

CyGen(PT)

(iter 1100) (iter 1200) (iter 1300) (iter 1400) (iter 30000)

(compt 1.1e5) (compt 1.6e5) (compt 2.6e5) (compt 8.6e5) (compt 1.2e8)

(compt 7.0e3) (compt 5.4e3) (compt 7.7e3) (compt 6.2e3) (compt 4.6e3)
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Experiment Results: Synthetic
• DAE mode collapse

DAE

After pretraining
(iter 1000)

(compt 1.6e4)

(iter 1100) (iter 1200) (iter 1300) (iter 1400) (iter 30000)

(compt 6.3e3) (compt 2.2e3) (compt 1.9e3) (compt 9.7e2)
(iter 9200)

(compt 2.2e2)

(compt 7.0e3) (compt 5.4e3) (compt 7.7e3) (compt 6.2e3) (compt 4.6e3)CyGen(PT)
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Experiment Results: Synthetic
• Generation and Representation: “8gaussians” dataset.

data DAE VAE CyGen

class-wise 
aggregated 

posterior

BiGAN CyGen(PT)

PreTrain as a VAE then 
mainly finetune 𝑞𝜙 𝑧 𝑥 .
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Experiment Results: MNIST & SVHN
• Data generation

VAE CyGen(PT)DAE

Chang Liu (MSRA)

MNIST

SVHN

FID: 157 128 102 23



Experiment Results: MNIST & SVHN
• Downstream classification on the latent space:

A hint on posterior collapse.
†: Results for BiGAN and GibbsNet are from [Lamb’17] which use a different, deterministic

architecture (not suitable for CyGen due to insufficient determinacy).
They make random guess using the same, probabilistic architecture.
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Thanks!
https://arxiv.org/abs/2106.15962
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