On the Generative Utility of Cyclic Conditionals

Chang Liu¹, Haoyue Tang², Tao Qin¹, Jintao Wang², Tie-Yan Liu¹.

¹ Microsoft Research Asia

² Tsinghua University

Introduction

The problem:

Whether or when can we model a *joint* distribution $p(x, z)$ only using two *conditional* models $p(x|z)$ and $q(z|x)$ that form a cycle? \qquad $p(z)$

• Motivation from deep generative models:

Model both $p(x|z)$ for *generation*, and $q(z|x)$ for *representation*. Define their common joint by a prior $p(z)$: $p(x, z) := p(z)p(x|z)$.

- Problems of Gaussian prior:
	- **Manifold mismatch**: $p(x)$ has a *simply connected support* as $p(z)$ \Rightarrow restricted expressiveness.
	- **Posterior collapse**: $q(z|x)$ is squeezed to the origin \Rightarrow degraded representativeness.
- Using an informative prior:

Domain knowledge on the prior is even more scarce than on the conditional models. (e.g., shift/rotation invariance of $q(z|x)$ for image representation (CNN/SphereNet))

• Learning a prior model: additional modeling and training cost.

 \mathcal{X}

VAE, BiGAN,

flow-based,

 $p_{\theta}(x)$

true data distr. BiGAN data distr.

BiGAN repr.

Introduction

The problem:

Whether or when can we model a *joint* distribution $p(x, z)$ only using two *conditional* models $p(x|z)$ and $q(z|x)$ that form a cycle?

- Key sub-problems:
	- **Compatibility** (existence): When the two conditionals can be induced from a common joint.
	- **Determinacy** (uniqueness): When the two *compatible* conditionals uniquely determine a joint.
- In this work,
	- Theory: **compatibility** criteria (equivalent conditions) and sufficient conditions for **determinacy**.
		- Operable and self-contained.
		- Unify continuous and discrete cases.
	- **CyGen**: **Cy**clic-conditional **Gen**erative model.
		- Methods for enforcing compatibility and determinacy, fitting data, and data generation.

true data distr. CyGen data distr.

Related Work: Modeling

- Cyclic conditional models
	- **Dependency networks** [Heckerman'00]: No latent variable (so compatibility is not a problem). Gibbs sampling for the joint.
	- Denoising auto-encoders (DAEs) [Vincent'08]: $\min \mathbb{E}_{p^*(x)q(Z|\mathcal{X})}[\log p(x|z)].$
		- Variants: Uncertainty AE [Grover'19], Walkback [Bengio'13], GibbsNet [Lamb'17].
		- The loss is not suitable for optimizing $q(z|x)$ (mode-collapse, weakens determinacy).
		- Inefficient generation and unstable training by Gibbs sampling.
	- **Dual learning** [He'16; Xia'17a,b; Lin'19], Disco[Kim'17]/Cycle[Zhu'17]/Dual[Yi'17]-GAN:
		- Not for generative modeling (in fact, they lack determinacy).
		- No latent variable, unpaired data.

Related Work: Theory

- **Compatibility**
	- The classical condition [Arnold'89,01,12] is not necessary.
	- The equivalent condition [Berti'14] is still existential.
	- Results from DAE [Bengio'13,14; Lamb'17; Grover'19]: not self-contained $(p^*(x)$ is required).
	- Cycle-consistency loss [Kim'17; Zhu'17; Yi'17; Lin'19]: only for Dirac (deterministic) conditionals.

• **Determinacy**

• Determining $p(x)$ through score matching (SM):

 $DAE \Leftrightarrow$ denoising SM (Gaussian RBM) [Vincent'11].

 $DAE \Leftrightarrow SM$ (Gaussian decoder noise and infinitesimal Gaussian corruption) [Alain'14].

- Determining $p(x, z)$ through Gibbs chain:
	- The chain is ergodic thus has a unique stationary distr. $\pi(x, z)$ under a global [Bengio'13; Lamb'17; Grover'19] or local [Bengio'13] shared support condition.
	- When incompatible, $\pi(z|x) \neq q(z|x)$ or $\pi(x|z) \neq p(x|z)$ [Heckerman'00, Bengio'13].
	- No explicit expression. Slow convergence for generation. Unstable training (Walkback, GibbsNet).
- The classical description [Arnold'12]: restricted to product support; Dirac case not covered.

Setup

- Measure spaces for random variables x and $z: (\mathbb{X}, \mathscr{X}, \xi)$ and $(\mathbb{Z}, \mathscr{Z}, \zeta)$.
- Product measure space $(\mathbb{X} \times \mathbb{Z}, \mathcal{X} \otimes \mathcal{Z}, \xi \otimes \zeta)$.
- For ${\mathcal W} \in \! {\mathscr X} {\pmb{\otimes}} {\mathscr Z}$, define

its *slice* at $z: \mathcal{W}_z := \{x \mid (x, z) \in \mathcal{W}\},\$ its *projection* onto \mathbb{Z} : $\mathcal{W}^{\mathbb{Z}} \coloneqq \{z \mid \exists x \in L(x, z) \in \mathcal{W}\}.$

• For a joint distribution π , define

its *marginal* onto \mathbb{Z} : $\pi^\mathbb{Z}(\mathcal{Z}) \coloneqq \pi(\mathbb{X} \times \mathcal{Z})$, its *conditional* $\pi(\mathcal{X}|z) \coloneqq$ $d\pi(\mathcal{X}\times\cdot$ $\mathrm{d}\pi^\mathbb{Z}(\cdot$ $z)$ (this is **only** $\boldsymbol{\pi}^\mathbb{Z}$ **-a.s. unique**).

• Define " $=$ ^{ξ}", " \subseteq ^{ξ}" as the extensions of " $=$ ", " \subseteq " up to a set of ξ -measure-zero.

Absolutely continuous case

- For any z and x, $\mu(\cdot | z)$ and $\nu(\cdot | x)$ are either abs. cont. (w.r.t ξ and ζ) or zero.
- Represented by density functions $p(x|z)$ and $q(z|x)$.
- Incl.: "smooth" distr. on Euclidean spaces / manifolds, *all* distr. on finite/discrete spaces.
- Incl.: VAEs, diffusion-based models.

Absolutely continuous case

- Compatibility
	- First intuition: the ratio $\frac{p(X|Z)}{q(Z|Y)}$ $q(Z|\mathcal{X})$ = $p(\pmb{x} ,\pmb{z}) / p(\pmb{z}$ $p(x, z)/p(x)$ $= p(x)$ 1 $p(z$ factorizes. when compatible
	- The classical condition [Arnold'89,01] requires the factorization over $X \times \mathbb{Z}$: It is *not necessary*! Because $p(x|z)$ is uncontrolled outside the support of $\pi^{\mathbb{Z}}$.

For identifying a proper region for the factorization,

- **Definition**: A set S is said to be a $\xi \otimes \zeta$ -complete component of $\mathcal{W} \in \mathscr{X} \otimes \mathscr{Z}$, if $\mathcal{S}^{\#} \cap \mathcal{W} =^{\xi \otimes \zeta} \mathcal{S}$, where $\mathcal{S}^{\#} \coloneqq \mathcal{S}^{\mathbb{X}} \times \mathbb{Z} \cup \mathbb{X} \times \mathcal{S}^{\mathbb{Z}}$ is the *stretch* of $\mathcal{S}.$
	- *Complete* under stretching and intersecting with W : so that integral on \mathcal{S}_z = integral on \mathcal{W}_z , for a.e. $z\in\mathcal{S}^\mathbb{Z}.$
	- Conditionals are a.s. determined on $\mathcal{S}^{\#}$ if \mathcal{S} is the support of the joint.

Theory Absolutely continuous case • **Theorem** *(compatibility criterion, abs. cont.).* $p(x|z)$ and $q(z|x)$ are compatible, if and only if there *exists* a set S (called *complete support*) such that: (i) S is a $\xi \otimes \zeta$ -complete component+ of both $\mathcal{W}_{p,q} \coloneqq \bigcup_{z: \mathcal{P}_z \subseteq \xi_{\mathcal{Q}_z}} \mathcal{P}_z \times \{z\}$ and $\mathcal{W}_{q,p} \coloneqq \bigcup_{x: \mathcal{Q}_x \subseteq \zeta_{\mathcal{P}_x}} \{x\} \times \mathcal{Q}_x$ where $P_z := \{x \mid p(x|z) > 0\}$, $P_x := \{z \mid p(x|z) > 0\}$, and $Q_z := \{x \mid q(z|x) > 0\}, Q_x := \{z \mid q(z|x) > 0\};$ (ii) $\mathcal{S}^{\mathbb{X}} \subseteq^{\xi} \mathcal{W}_{q,p}^{\mathbb{X}}, \mathcal{S}^{\mathbb{Z}} \subseteq^{\zeta} \mathcal{W}_{p,q}^{\mathbb{Z}}$; (iii) $(\xi \otimes \zeta)(\zeta) > 0$; (iv) $\frac{p(x|z)}{q(z|x)}$ $q(Z|\mathcal{X})$ factorizes as $a(x)b(z)$, $\xi\otimes\zeta$ -a.e. on $\mathcal{S};$ (v) $a(x)$ is ξ -integrable on $\mathcal{S}^{\mathbb{X}}$. For sufficiency, $\pi(\mathcal{W}) \coloneqq$ $\int_{W\cap S} q(Z|X) |a(x)| (\xi \otimes \zeta)(dx dz)$ $\int_{\mathcal{S}} \mathbb{X} \left| a(x) \right| \xi(\mathrm{d} x)$, $\forall W \in \mathcal{X} \otimes \mathcal{Z}$ is a compatible joint. ℤ **X** $z_1 \nsubseteq \mathcal{W}_{n}^{\mathbb{Z}}$ $\mathbb{Z}_{2,2}^{\mathbb{Z}}\subseteq \mathcal{W}_{p,q}^{\mathbb{Z}}$ $\mathcal{Q}_{Z\!h}^{\bot}$ \mathcal{P}_{Z_1} $⊈_1^{\xi}$ $\overline{\mathcal{Q}}_{\mathbf{Z_2}}$ $\left| \mathcal{P}_{Z_2} \right|$ ⊆ $\mathcal{W}_{p,q}$, $W_{a,p}$, S $q(z|x)$ $p(x|z)$ the first intuition to make the ratio *welldefined* If z is in the support of the joint, then $p(x|z)$ determines the distribution on $X \times \{z\}$, so $q(z|x)$ should respect it (> 0 where $p(x|z)$ is) to avoid *support conflict*. makes conditionals *normalized*, since $\mathcal{S}_z = \frac{\xi}{\mu} \left(\mathcal{W}_{p,q} \right)_z = \mathcal{P}_z$. for sufficiency; not guaranteed by (i) often just a few candidates, so it is *operable*.

Absolutely continuous case

- **Theorem** (determinacy, abs. cont.). Let S be a complete support of *compatible* conditionals $p(x|z)$ and $q(z|x)$. If $\mathcal{S}_z = \zeta^x \mathcal{S}^x$ for ζ -a.e. $z \in \mathcal{S}^\mathbb{Z}$ or $\mathcal{S}_x = \zeta \mathcal{S}^\mathbb{Z}$ for ξ -a.e. $x \in \mathcal{S}^\mathbb{X}$, then their compatible joint supported on S is unique.
	- Roughly means S is "rectangular": *irreducibility* of the Gibbs chain.
	- The uniqueness is only possible on each complete support S .
- **Corollary**. If *compatible* conditionals $p(x|z)$ and $q(z|x)$ have a.e.-full supports, then their compatible joint on $X \times Z$ is unique.
	- Determinacy in the abs. cont. case is often *sufficient*.

Dirac case

• $\mu(\mathcal{X}|z) = \delta_{f(z)}(\mathcal{X}) \coloneqq \mathbb{I}[f(z) \in \mathcal{X}]$ (f: $\mathbb{Z} \to \mathbb{X}$ is measurable; e.g., when continuous).

- Incl.: Euclidean/manifold case (no density function), and finite/discrete case (*also abs. cont.*).
- Incl.: GANs, flow-based models.

Compatibility:

• **Theorem** (compatibility criterion, Dirac). Suppose $\mathscr X$ contains all the single-point sets. Then conditional $v(\cdot | x)$ is compatible with $\mu(\mathcal{X}|z) = \delta_{f(z)}(\mathcal{X})$, if and only if there exists $x_0 \in \mathbb{X}$ s.t. $\nu(f^{-1}(\{x_0\})|x_0) = 1$.

- $v(\cdot | x)$ is not required to concentrate on the curve for *any* x: for *one* such x_0 , $\delta_{(x_0,f(x_0))}$ is already a compatible joint.
- When $v(\cdot|x) \coloneqq \delta_{g(x)}(\cdot)$ and compatibility is desired over a set \mathcal{X} :
	- Min the cycle-consistency loss $\mathbb{E}_{p(x)}\ell\left(x,f(g(x))\right)$ is sufficient ($p(x)$ supported on $\mathcal{X};\ell$ a metric).
	- It is also *necessary* if f is invertible: flow-based models are naturally compatible.

Dirac case

Determinacy:

- On each x_0 in the theorem, there is a compatible joint $\delta_{(x_0,f(x_0))}$.
- But if such an x_0 is not unique, the joint is *not unique* on $X \times \mathbb{Z}$.
	- Determinacy in the Dirac case is usually *insufficient*: Compatible Dirac conditionals only determine a curve on $X \times Z$ but not a distribution on it.

• If $f(z) \equiv x_0$ is constant, then the joint is fully determined by $v(\cdot | x_0)$.

- Dirac conditionals (e.g., in GANs, flow-based models) are not suitable (*insufficient* determinacy).
- Use **abs. cont.** conditionals (like VAEs), modeled by parameterized **densities** $p_{\theta}(x|z)$, $q_{\phi}(z|x)$ with full supports.

• Enforcing compatibility:

 $C(\theta, \phi) \coloneqq \mathbb{E}_{\rho(x,z)} || \nabla_x \nabla_z^{\mathsf{T}} r_{\theta, \phi}(x, z) ||_F^2$ 2 , where $r_{\theta, \phi}(x, z) \coloneqq \log \bigl(p_\theta(x|z) / q_\phi(z|x) \bigr)$,

and $\rho(x, z)$ is an abs. cont. reference distr. supported on $X \times \mathbb{Z}$, e.g., $p^*(x)q_{\phi}(z|x)$.

- $C(\theta, \phi) = 0 \Leftrightarrow p_{\theta}(x|z)/q_{\phi}(z|x)$ factorizes a.e.
- Generalizes the *cycle-consistency loss* to *probabilistic* conditionals.
- **Efficient implementation** by Hutchinson's ['89] trace estimator: $\text{tr}(A) = \mathbb{E}_{p(\eta)}[\eta^{\top}A\eta]$

$$
\begin{aligned}\n\blacktriangleright \mathcal{C}(\theta,\phi) &= \mathbb{E}_{\rho(x,z)} \mathbb{E}_{p(\eta)} \left\| \nabla_z \left(\eta^\top \nabla_x r_{\theta,\phi}(x,z) \right) \right\|_2^2. \\
\text{#{derivative computation}}: \mathcal{O}(d_{\mathbb{X}} d_{\mathbb{Z}}) &\rightarrow \mathcal{O}(d_{\mathbb{X}} + d_{\mathbb{Z}}).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{[p(\eta) is any dist. s.t. } \\
\mathbb{E}[\eta] &= 0, \text{Var}[\eta] = I.\n\end{aligned}
$$

• Gradient estimation for flows $q_{\phi}(z|x)$: $z = T_{\phi}(e|x)$, $e \sim p(e)$ with *intractable inverse*: $\nabla_Z \log q_{Z|X}\left(T_{\boldsymbol\phi}(e|x)|x\right) = \left(\nabla_e T_{\boldsymbol\phi}^\top(e|x)\right)$ −1 $\nabla_e h_{\boldsymbol{\phi}}(e, x)$, $\nabla_X \log q_{Z|X}\left(T_{\boldsymbol\phi}(e|x)|x\right)=\nabla_x h_{\boldsymbol\phi}(e,x)-\left(\nabla_x T_{\boldsymbol\phi}^\top(e|x)\right)\nabla_Z \log q_{Z|X}\left(T_{\boldsymbol\phi}(e|x)|x\right),$ where $h_{\phi}(e, x) := \log q_{Z|X} (T_{\phi}(e|x)|x)$.

• Enforcing compatibility:

 $C(\theta, \phi) \coloneqq \mathbb{E}_{\rho(x,z)} || \nabla_x \nabla_z^{\mathsf{T}} r_{\theta, \phi}(x, z) ||_F^2$ 2 , where $r_{\boldsymbol{\theta}, \boldsymbol{\phi}}(x, z) \coloneqq \log\big(\, p_{\boldsymbol{\theta}}(x|z) / q_{\boldsymbol{\phi}}(z|x)\,\big).$

- Implication on Gaussian VAE $p_\theta(x|z) = \mathcal{N}(x|f_\theta(z), \sigma_d^2 I)$, $q_\phi(z|x) = \mathcal{N}(z|g_\phi(x), \sigma_e^2 I)$: $\mathcal{L}(\theta, \phi) = \mathbb{E}_{\rho(x,z)} \left\| \frac{1}{\sigma^2} \right\|$ σ_d^2 $\frac{1}{2}(\nabla_{Z}f^{\top}(z))^{\top}$ $-\frac{1}{\sqrt{2}}$ $\frac{1}{\sigma_e^2} \nabla_{\chi} g^{\top} (x)$ F 2 $= 0 \Longleftrightarrow f_{\theta}(z)$, $g_{\boldsymbol{\phi}}(x)$ are affine.
	- Meets conclusions in causality [Zhang'09; Peters'14].
	- Root cause of recent observation (latent space is quite linear [Shao'18]) and analysis (latent space coordinates the data manifold [Dai'19], encoder learns a rescaled isometric embedding [Nakagawa'21]).
	- For a nonlinear repr., use a more flexible $q_{\phi}(z|x)$ model (e.g., Sylvester flow [VDBerg'18]).
- Relation to AE regularizations:
	- Contractive AE [Rifai'11]: $\mathbb{E}_{p^*(x)} || \nabla g^\top (x) ||_F^2$.
	- Denoising AE [Rifai'11; Alain'14]: $\mathbb{E}_{p^*(x)} || \nabla (f \circ g)^\top$ \overline{F} 2_F (Gauss. enc. noise, infinitesimal Gauss. corruption).
	- "Tied weights" in AEs [Vincent'08; Rifai'11; Alain'14]: compatibility for sigmoid conditionals.

- Fitting data:
	- Maximum Likelihood Estimator (MLE) is available: $\approx \log \sum_{i=1}^{N} \exp(-\log p_{\theta}(x|z^{(i)})) - \log N$
		- $\max_{\theta, \phi} \bigg) \mathbb{E}_{p^*(x)} \big[\log p_{\theta, \phi}(x) \big] = \mathbb{E}_{p^*(x)} \big[-\log \mathbb{E}_{q_{\phi}(z'|x)}[1/p_{\theta}(x|z')] \big].$ • The DAE objective $\mathbb{E}_{p^*(x)q_{\phi}(Z'|x)}[\log p_{\theta}(x|z')]\geq \mathbb{E}_{p^*(x)}[\log p_{\theta,\phi}(x)]$:
		- improper for MLE; makes $q_{\phi}(z'|x)$ mode-collapsed and hurts determinacy.
		- CyGen final training loss: $(\min_{\theta,\phi})$ $\mathbb{E}_{p^*(x)}[-\log p_{\theta,\phi}(x)] + \lambda \; \mathcal{C}(\theta,\phi).$
- Data generation: sample from the model-determined data distribution $p_{\theta,\phi}(x)$.
	- **Dynamics-based MCMCs**:
		- Converge faster than Gibbs sampling.
		- Only need unnormalized $p_{\theta, \phi}(x)$, which is available: $p_{\theta, \phi}(x) \propto \frac{p_{\theta}(x) z}{\theta + (z) x}$ $q_{\boldsymbol{\phi}}(z|x)$, ∀.
		- E.g., Stochastic Gradient Langevin dynamics (SGLD): $x^{(t+1)} = x^{(t)} + \varepsilon \nabla_{x^{(t)}} \log \frac{p_{\theta}(x^{(t)} | z^{(t)})}{q_{\phi}(z^{(t)} | x^{(t)})}$ $\frac{p_\theta(x^{(t)}|z^{(t)})}{q_\phi(z^{(t)}|x^{(t)})} + \sqrt{2\varepsilon} \, \eta^{(t)}$, where $z^{(t)} \sim q_\phi\bigl(z|x^{(t)}\bigr)$, $\eta^{(t)} \sim \mathcal{N}(0,I)$.

 $z^{(i)}$

 $\sum_{(i)}$

numerical stability $\left\{z^{(i)}\right\}_{i=1}^N \sim q_\phi(z'|x)$

`logsumexp` trick for

 $i=1$

 \boldsymbol{N}

• **Generation** and **Representation**: *manifold mismatch* and *posterior collapse* solved.

Pre**T**rain as a VAE then

mainly finetune $q_{\phi}(z|x)$.

- **Incorporating knowledge into conditional models**
	- The VAE-pretrained $p_{\theta}(x|z)$ model encodes the knowledge:

"*the prior is centered and centrosymmetric*".

• **Comparison of data generation methods**: SGLD is better and more robust to incompatibility.

• **Necessity of compatibility**

• **DAE mode collapse**

Experiment Results: MNIST & SVHN

MNIST

SVHN

FID: 157 157 Chang Liu (MSRA) 102 23

 \bullet 5

 \overline{a}

6

5

5

7 g

6

9 5

3

3

↴

5

9

9 9

 Ω 9

2 \overline{z}

Experiment Results: MNIST & SVHN

- Downstream classification on the latent space:
	- A hint on posterior collapse.
	- †: Results for BiGAN and GibbsNet are from [Lamb'17] which use a different, deterministic architecture (not suitable for CyGen due to insufficient determinacy). They make random guess using the same, probabilistic architecture.

Thanks!

<https://arxiv.org/abs/2106.15962>

References

- [Heckerman'00] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1(Oct):49-75, 2000.
- [Vincent'08] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the International Conference on Machine Learning, pages 1096-1103, 2008.
- [Grover'19] A. Grover and S. Ermon. Uncertainty autoencoders: Learning compressed representations via variational information maximization. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2514- 2524. PMLR, 2019.
- [Bengio'13] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In Advances in Neural Information Processing Systems, 2013.
- [Lamb'17] A. M. Lamb, D. Hjelm, Y. Ganin, J. P. Cohen, A. C. Courville, and Y. Bengio. GibbsNet: Iterative adversarial inference for deep graphical models. In Advances in Neural Information Processing Systems, pages 5089-5098, 2017.
- [He'16] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma. Dual learning for machine translation. In Advances in Neural Information Processing Systems, pages 820-828, 2016.
- [Xia'17a] Y. Xia, J. Bian, T. Qin, N. Yu, and T.-Y. Liu. Dual inference for machine learning. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), pages 3112-3118, 2017.
- [Xia'17b] Y. Xia, T. Qin,W. Chen, J. Bian, N. Yu, and T.-Y. Liu. Dual supervised learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3789-3798. JMLR.org, 2017.
- [Lin'19] J. Lin, Z. Chen, Y. Xia, S. Liu, T. Qin, and J. Luo. Exploring explicit domain supervision for latent space disentanglement in unpaired image-to-image translation. IEEE transactions on pattern analysis and machine intelligence, 2019.

References

- [Kim'17] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1857-1865. JMLR.org, 2017.
- [Zhu'17] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 2223-2232, 2017.
- [Yi'17] Z. Yi, H. Zhang, P. Tan, and M. Gong. DualGAN: Unsupervised dual learning for image-to-image translation. In Proceedings of the IEEE International Conference on Computer Vision, pages 2849-2857, 2017.
- [Arnold'89] B. C. Arnold and S. J. Press. Compatible conditional distributions. Journal of the American Statistical Association, 84(405):152-156, 1989.
- [Arnold'01] B. C. Arnold, E. Castillo, J. M. Sarabia, et al. Conditionally specified distributions: an introduction. Statistical Science, 16(3):249-274, 2001.
- [Berti'14] P. Berti, E. Dreassi, and P. Rigo. Compatibility results for conditional distributions. Journal of Multivariate Analysis, 125:190-203, 2014.
- [Bengio'14] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep generative stochastic networks trainable by backprop. In International Conference on Machine Learning, pages 226–234, 2014.
- [Vincent'11] P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661–1674, 2011.
- [Alain'14] G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-generating distribution. The Journal of Machine Learning Research, 15(1):3563–3593, 2014.

References

- [Zhang'09] K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009), pages 647-655. AUAI Press, 2009.
- [Peters'14] J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous additive noise models. Journal of Machine Learning Research, 15(1):2009–2053, 2014.
- [Shao'18] H. Shao, A. Kumar, and P. Thomas Fletcher. The Riemannian geometry of deep generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 315–323, 2018.
- [Dai'19] B. Dai and D.Wipf. Diagnosing and enhancing VAE models. In Proceedings of the International Conference on Learning Representations (ICLR), 2019.
- [Nakagawa'21] A. Nakagawa, K. Kato, and T. Suzuki. Quantitative understanding of VAE as a non-linearly scaled isometric embedding. In Proceedings of the 38th International Conference on Machine Learning, 2021.
- [VDBerg'18] R. Van Den Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester normalizing flows for variational inference. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 393–402. Association For Uncertainty in Artificial Intelligence (AUAI), 2018.
- [Rifai'11] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the International Conference on Machine Learning, 2011.
- [Hutchinson'89] M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059-1076, 1989.