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Main contributions

Preferability of policy optimization algorithms: 

Faster methods in true gradient settings are dominated by slower counterparts

Softmax policy gradient (PG), natural PG (NPG), geometry-aware normalized PG (GNPG)

Committal rate: 

Necessary condition for almost sure convergence to globally optimal policy

Geometry-convergence trade-off: 

Cannot achieve almost sure global convergence with faster than O(1/t) rates

Explaining initialization sensitivity and ensemble methods



Preferability of policy optimization algorithms

One-state Markov Decision Processes (MDPs), deterministic reward

Softmax parameterization 



Algorithms: true gradient settings

Softmax policy gradient (PG):

Natural PG (NPG):

Geometry-aware normalized PG (GNPG):



Results: true gradient settings



Algorithms: on-policy stochastic gradient settings

On-policy importance sampling estimator:



Algorithms: on-policy stochastic gradient settings

On-policy importance sampling estimator:

Softmax policy gradient (PG):

Natural PG (NPG):

Geometry-aware normalized PG (GNPG):



Results: reversed in two settings



Results: reversed in two settings

Same reason:
faster rate with true gradients
failure with on-policy stochastic gradients 



Difficulty: coupling in on-policy setting

Coupled circle between “sampling” and “updating”



Change stochastic behaviours to deterministic behaviours

Decouple the circle between “sampling” and “updating”



Committal rate: larger -- more aggressive

Fix sampling one action forever, measure the aggressiveness of an update



Committal rate: larger -- more aggressive

Fix sampling one action forever, measure the aggressiveness of an update

Examples:



Necessary condition for almost sure convergence

The following is a necessary condition for almost sure convergence to optimal 
policy, for any on-policy policy optimization algorithm:



Necessary condition for almost sure convergence

The following is a necessary condition for almost sure convergence to optimal 
policy, for any on-policy policy optimization algorithm:

Reason: If                       , then 

Aggressive updates could fail by sampling one action forever.
lack of exploration
“vicious circle” between sampling and updating



Necessary condition for almost sure convergence

The following is a necessary condition for almost sure convergence to optimal 
policy, for any on-policy policy optimization algorithm:

Reason: If                       , then 



One side: high committal rate → instability

The following is a necessary condition for almost sure convergence to optimal 
policy, for any on-policy policy optimization algorithm:

Verification: 



Another side: fast rate → high committal rate

If                 with positive probability, then  



Another side: fast rate → high committal rate

If                 with positive probability, then  

Reason:

A tension between aggressiveness and stability.



Geometry-Convergence Trade-off

If                                    for at least one sub-optimal action a, then the algorithm 
can achieve at most one of the following two properties: 

(1) converges to a globally optimal policy almost surely

(2) converges to a deterministic policy at a rate faster than O(1/t) w.p. > 0



Geometry-Convergence Trade-off

If                                    for at least one sub-optimal action a, then the algorithm 
can achieve at most one of the following two properties: 

(1) converges to a globally optimal policy almost surely

(2) converges to a deterministic policy at a rate faster than O(1/t) w.p. > 0

Can achieve none of them:                       (“staying”)

Difference with Omega(log T) bandit lower bounds: holds for deterministic reward settings.



Geometry-Convergence Trade-off

“If                                    for at least one sub-optimal action a” is necessary, 
otherwise the trade-off could be bypassed.



Geometry-Convergence Trade-off

“If                                    for at least one sub-optimal action a” is necessary, 
otherwise the trade-off could be bypassed.

If it is broken (“oracle baseline”):

Then NPG achieves both almost sure global convergence and a                 rate.  



Explaining practical observations

Same method, different random seeds, very different performances

Practical methods like PPO are aggressive NPG based

On-policy NPG in its nature will converge to different places w.p. > 0



Explaining practical observations

Same method, different random seeds, very different performances

Practical methods like PPO are aggressive NPG based

On-policy NPG in its nature will converge to different places w.p. > 0

Ensemble methods: run log(1/delta) parallel instances, pick the best one

W.p. 1 - delta, the best one converges to the optimal policy



One-state MDPs to general MDPs

The results generalize to general finite Markov Decision Processes (MDPs).



Conclusions

Preferability of policy optimization algorithms: 

Faster methods in true gradient settings are dominated by slower counterparts

Softmax policy gradient (PG), natural PG (NPG), geometry-aware normalized PG (GNPG)

Committal rate: 

Necessary condition for almost sure convergence to globally optimal policy

Geometry-convergence trade-off: 

Cannot achieve almost sure global convergence with faster than O(1/t) rates

Explaining initialization sensitivity and ensemble methods


