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Main contributions

Preferability of policy optimization algorithms:

Faster methods in true gradient settings are dominated by slower counterparts

Softmax policy gradient (PG), natural PG (NPG), geometry-aware normalized PG (GNPG)
Committal rate:

Necessary condition for almost sure convergence to globally optimal policy
Geometry-convergence trade-off:

Cannot achieve almost sure global convergence with faster than O(1/t) rates

Explaining initialization sensitivity and ensemble methods



Preferability of policy optimization algorithms

One-state Markov Decision Processes (MDPs), deterministic reward
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Softmax parameterization

exp{f(a)}
a’ €[K] exp{0(a’)}
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Algorithms: true gradient settings

dm,] r
Softmax policy gradient (PG): 0t+1 — Ht +n- &
db,
Natural PG (NPG): 9t+1 < 9t +n-r
dwir dwgr

Geometry-aware normalized PG (GNPG): 9t+1 — 0, + -
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Results: true gradient settings

Softmax PG

NPG

GNPG

True gradient

converges O(1/t) vV

converges O(e ¢?)
Y

converges O(e ©?)
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Algorithms: on-policy stochastic gradient settings

On-policy importance sampling estimator:

Definition 1 (On-policy IS). At iteration t, sample one action a; ~ my,. The IS reward estimator 7

is constructed as 7(a) = Hf:;t(:aa)} -r(a) forall a € [K].




Algorithms: on-policy stochastic gradient settings

On-policy importance sampling estimator:

Definition 1 (On-policy IS). At iteration t, sample one action a; ~ my,. The IS reward estimator 7

is constructed as 7(a) = Hg‘;t(:aa)} -r(a) forall a € [K].

do,

Softmax policy gradient (PG):  6;41 < 0 + 1 -
Natural PG (NPG): Ori1 0 +n-74

dmg 7y sy dmg 7y
Geometry-aware normalized PG (GNPG): 0y41 =6 + 1 - dgt /H dgt
t t

2



Results: reversed in two settings

Softmax PG NPG GNPG
, converges O(e™°") | converges O(e )
True gradient converges O(1/t) Vv SIS SIS
Stochastic on-policy | converges in prob. v/ fails w.p. > 0 X fails w.p. > 0 X




Results: reversed in two settings

Softmax PG NPG GNPG
_ converges O(e ") | converges O(e ")
True gradient converges O(1/t) Vv SIS SIS
Stochastic on-policy | converges in prob. v/ fails w.p. > 0 X fails w.p. > 0 X

Same reason:
faster rate with true gradients
failure with on-policy stochastic gradients



Difficulty: coupling in on-policy setting

Coupled circle between “sampling” and “updating”

Y

Sampling

At ~ 7o, ()

t+—t+1

Updating
Orr1 < A0y, ae,m)
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Change stochastic behaviours to deterministic behaviours

Decouple the circle between “sampling” and “updating”

Sampling (fixed)
Ay — a

Updating
bt Ht—l—l F“4(97570'75777)

A




Committal rate: larger -- more aggressive

Fix sampling one action forever, measure the aggressiveness of an update

k(A,a) = sup {a > 0:limsupt® - [1 —my,(a)] < oo}

t— 00



Committal rate: larger -- more aggressive
Fix sampling one action forever, measure the aggressiveness of an update

k(A,a) = sup {a > 0:limsupt® - [1 —my,(a)] < oo}

t— 00

Examples:
7o, (a) =1 —1/(t-log(t)) k(A a) =1

mp,(a) =1—1/e! k(A a) = oc

1 — 7, (a) € Q1) k(A,a) =0



Necessary condition for almost sure convergence

The following is a necessary condition for almost sure convergence to optimal
policy, for any on-policy policy optimization algorithm:

max k(A ,a) <1
a:r(a)<r(a*),mgo, (a)>0



Necessary condition for almost sure convergence

The following is a necessary condition for almost sure convergence to optimal
policy, for any on-policy policy optimization algorithm:

max k(A ,a) <1
a:r(a)<r(a*),mgo, (a)>0

Reason: If k(A,a) > 1,then Pr(a; =a for all t > 1|a; ~ mg,(+)) >0

Aggressive updates could fail by sampling one action forever.
lack of exploration
“vicious circle” between sampling and updating



Necessary condition for almost sure convergence

The following is a necessary condition for almost sure convergence to optimal
policy, for any on-policy policy optimization algorithm:

max k(A ,a) <1

a:r(a)<r(a*),mgo, (a)>0

Reason: If k(A,a) > 1,then Pr(a; =a for all t > 1|a; ~ mg,(+)) >0

HWOt > 0 if and only if Z (1 —mp,(a)) < x

t=1



One side: high committal rate — instability

The following is a necessary condition for almost sure convergence to optimal
policy, for any on-policy policy optimization algorithm:

max k(A a) <1
a:r(a)<r(a*),mgo, (a)>0
Verification: k(NPG,a) = o0
k(GNPG,a) = ¢

k(PG,a) =1



Another side: fast rate — high committal rate

If O(1/t%) with positive probability, then x(A,a™) > «



Another side: fast rate — high committal rate

If O(1/t%) with positive probability, then k(A,a™) > a

Reason: (71* — Wgt)T r> (1 —mg, (a*)) A

A tension between aggressiveness and stability.



Geometry-Convergence Trade-off
If k(A,a") = k(A,a) for at least one sub-optimal action a, then the algorithm
can achieve at most one of the following two properties:

(1) converges to a globally optimal policy almost surely

(2) converges to a deterministic policy at a rate faster than O(1/t) w.p. > 0



Geometry-Convergence Trade-off

If k(A,a") = k(A,a) for at least one sub-optimal action a, then the algorithm
can achieve at most one of the following two properties:

(1) converges to a globally optimal policy almost surely

(2) converges to a deterministic policy at a rate faster than O(1/t) w.p. > 0

Can achieve none of them: 6;,1 < 6; (“staying”)

Difference with Omega(log T) bandit lower bounds: holds for deterministic reward settings.



Geometry-Convergence Trade-off

“f k(A,a*) = k(A,a) foratleast one sub-optimal action a” is necessary,
otherwise the trade-off could be bypassed.



Geometry-Convergence Trade-off

“‘If k(A,a™) = k(A,a) foratleast one sub-optimal action a” is necessary,
otherwise the trade-off could be bypassed.

If it is broken (“oracle baseline”): r(a1) =1, r(az)= -1

k(NPG,a1) = 0, kK(NPG,a3) =0

Then NPG achieves both almost sure global convergence and a O(e™ ") rate.



Explaining practical observations

Same method, different random seeds, very different performances
Practical methods like PPO are aggressive NPG based

On-policy NPG in its nature will converge to different places w.p. > 0



Explaining practical observations

Same method, different random seeds, very different performances
Practical methods like PPO are aggressive NPG based

On-policy NPG in its nature will converge to different places w.p. > 0

Ensemble methods: run log(1/delta) parallel instances, pick the best one

W.p. 1 - delta, the best one converges to the optimal policy



One-state MDPs to general MDPs

The results generalize to general finite Markov Decision Processes (MDPs).



Conclusions

Preferability of policy optimization algorithms:

Faster methods in true gradient settings are dominated by slower counterparts

Softmax policy gradient (PG), natural PG (NPG), geometry-aware normalized PG (GNPG)
Committal rate:

Necessary condition for almost sure convergence to globally optimal policy
Geometry-convergence trade-off:

Cannot achieve almost sure global convergence with faster than O(1/t) rates

Explaining initialization sensitivity and ensemble methods



