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Motivation Edge-to-image generation Class-conditional generation
¢ Polynomial networks (PNs) have demonstrated impressive results in image gen- e We train polynomial generators with linear blocks, i.e. ditching the activation functions Quantitative evaluation on class-conditional generation with SNGAN-based |5] gen-
eration |4, 2J. between the layers, in a GAN setting: erator:
e However, in conditional image generation we have two (or more) input variables, class-conditional generation on CIFAR10
instead of a polynomial expansion of a single variable. Model [nception Score (1) Frechet Inception Distance ({)
e Our model, called CoPE, expresses a high-degree, multivariate polynomial for SNGAN 550 £0.11 1470 £ 0.97
conditional data generation. We exhibit how CoPE can be applied on five diverse SNGAN-CONC 5.90 £ 0.49 30.00 % 3.0
conditional seneration taské SNGAN-ADD 8.65 £ 0.11 15.47 +£0.74
- ' SNGAN-SPADE|  8.60 = 0.1 2174+ 0.73
SNGAN-CoPE 8.77 =0.12 14.22 == 0.66
Method BigGAN [1] i 14.70

The baselines SNGAN-CONC, SNGAN-ADD are constructed by changing the
Hadamard product to concatenation and addition respectively. SNGAN-SPADE
adapts SPADE [6] for class-conditional generation. Notice that the proposed
SNGAN-CoPE outperforms all the compared methods, even larger models.

e In conditional generation, we have (at least two) input vectors z, z;; € R, We
want to learn a function G(z;, z;;) to approximate the target function.

. . : : : Fig. 3: The first row depicts the conditional input (i.c., the edges). Th 2-6 depict outputs wh
e The typical approach is to concatenate the two vectors either in the input or the © ¢ first xow depicts the conditional input {i.c., the edges). The rows 26 depict outputs when we vary 27 (i., noise)

feature space. However, this captures only a linear correlation between the two e Contrary to previous works, only the GAN minmax objective is used without any

vectors as we argue. additional losses and without any additional networks. Acknowledgements

e Instead, we want to use an alternative approximator, i.e. polynomial expansions.
We define the recursive form:

e The generator without activation functions between the layers can learn the data distribu-
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forn = 2,....N with @y = U ]Zl + ULz and @ = Cay + B The Generation of unseen attribute combinations References
vector B and the matrices C € ROk Upg € RIE for p = 1,.... N and
¢ = {I,II} are learnable. We assess the performance in the multi-label setting of [3], where one (or more) combinations
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Fig. 1. Schematics of CoPE.
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In (a), all combinations are illustrated (the red is the combination missing during training, i.e.
Female+Smile), while in (b), only images from the missing combination are visualized.

Fig. 2: Source code



