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Motivation

• Polynomial networks (PNs) have demonstrated impressive results in image gen-
eration [4, 2].

• However, in conditional image generation we have two (or more) input variables,
instead of a polynomial expansion of a single variable.

• Our model, called CoPE, expresses a high-degree, multivariate polynomial for
conditional data generation. We exhibit how CoPE can be applied on five diverse
conditional generation tasks.

Method

• In conditional generation, we have (at least two) input vectors zI, zII ∈ Rd. We
want to learn a function G(zI, zII) to approximate the target function.

• The typical approach is to concatenate the two vectors either in the input or the
feature space. However, this captures only a linear correlation between the two
vectors as we argue.

• Instead, we want to use an alternative approximator, i.e. polynomial expansions.
We define the recursive form:

xn = xn−1 +
(
UT
[n,I ]zI +UT

[n,II ]zII

)
∗ xn−1, (1)

for n = 2, . . . , N with x1 = UT
[1,I ]

zI + UT
[1,II ]

zII and x = CxN + β. The

vector β and the matrices C ∈ Ro×k,U[n,ϕ] ∈ Rd×k for n = 1, . . . , N and

ϕ = {I, II} are learnable.

• The symbol ‘∗’ refers to an elementwise product.
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Fig. 1: Schematics of CoPE.

Fig. 2: Source code

Edge-to-image generation

• We train polynomial generators with linear blocks, i.e. ditching the activation functions
between the layers, in a GAN setting:

Fig. 3: The first row depicts the conditional input (i.e., the edges). The rows 2-6 depict outputs when we vary zI (i.e., noise).

• Contrary to previous works, only the GAN minmax objective is used without any
additional losses and without any additional networks.

• The generator without activation functions between the layers can learn the data distribu-
tions.

Generation of unseen attribute combinations

We assess the performance in the multi-label setting of [3], where one (or more) combinations
are not seen in the training set. Synthesized images below:

In (a), all combinations are illustrated (the red is the combination missing during training, i.e.
Female+Smile), while in (b), only images from the missing combination are visualized.

Class-conditional generation

Quantitative evaluation on class-conditional generation with SNGAN-based [5] gen-
erator:

class-conditional generation on CIFAR10
Model Inception Score (↑) Frechet Inception Distance (↓)
SNGAN 8.30± 0.11 14.70± 0.97

SNGAN-CONC 8.50± 0.49 30.65± 3.55
SNGAN-ADD 8.65± 0.11 15.47± 0.74
SNGAN-SPADE 8.69± 0.19 21.74± 0.73
SNGAN-CoPE 8.77± 0.12 14.22± 0.66
BigGAN [1] - 14.70

The baselines SNGAN-CONC, SNGAN-ADD are constructed by changing the
Hadamard product to concatenation and addition respectively. SNGAN-SPADE
adapts SPADE [6] for class-conditional generation. Notice that the proposed
SNGAN-CoPE outperforms all the compared methods, even larger models.
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