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Topic: Graph Similarity Computation

Problem Introduction
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Topic: Graph Similarity Computation - GED

Problem Introduction

Concept of Graph Editing Distance (GED)
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Challenges of Exact GED Solvers

uChallenge: 
n Exact computation of GED is an NP-Hard problem, which is unable to scale up due to the complexity.
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Soft/Approximate GED Solution
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Bai, Yunsheng, et al. "Simgnn: A neural network approach to fast graph similarity computation." WSDM. 2019.
Li, Yujia, et al. "Graph matching networks for learning the similarity of graph structured objects." ICML. 2019.

Deep Regression

Topic: Co-attention Model



Limitations of Co-attention Models
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Bai, Yunsheng, et al. "Simgnn: A neural network approach to fast graph similarity computation." WSDM. 2019.
Li, Yujia, et al. "Graph matching networks for learning the similarity of graph structured objects." ICML. 2019.

Deep Regression

Topic: Low Efficiency of Co-attention Models
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Our Motivation
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Topic: Distill Co-attention Model to Siamese Models 
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Our Motivation
Topic: Offline Embeddings Collection and Online Inference
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Proposed Approach: Teacher Network
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Topic: Proposed Early-fusion/Co-attention Network

Data Flow



Challenge: 1-to-2 Knowledge Distillation 
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Topic: How to distill individual embeddings from joint embedding?
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Proposed Approach: Knowledge Distillation
Topic: 1-to-2 Knowledge Distillation
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Proposed Approach: Knowledge Distillation
Topic: Offline Embeddings Collection and Online Inference
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Proposed Approach: Knowledge Distillation
Topic: Offline Embeddings Collection and Online Inference
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Proposed Approach: Knowledge Distillation
Topic: Offline Embeddings Collection and Online Inference
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Proposed Approach: Knowledge Distillation
Topic: Offline Embeddings Collection and Online Inference
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Proposed Approach: Knowledge Distillation
Topic: Offline Embeddings Collection and Online Inference
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Proposed Approach: Knowledge Distillation
Topic: Offline Embeddings Collection and Online Inference
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Experiments

• Benchmarks:
Ø AIDS
Ø LINUX
Ø IMDB
Ø ALKANE

• Baselines:
Ø Beam, Hungarian, VJ
Ø SimGNN, Extended-SimGNN
Ø GMN
Ø GENN-A*

• Matrices
Ø Mean Squared Error (mse)
Ø Spearman’s Rank Correlation Coefficient
Ø Kendall’s Rank Correlation Coefficient
Ø Precision at k (p@k), e.g., p@10, p@20

• Framework
Ø PyG

Topic: Setup



Experiments
Topic: Quantitative Results



Experiments
Topic: Ablation Study



Experiments
Topic: Time Cost and Case Study
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