

Differentially Private Federated Bayesian Optimization with Distributed Exploration

Zhongxiang Dai ¹

Bryan Kian Hsiang Low ¹

Patrick Jaillet ²

¹ Department of Computer Science, National University of Singapore

² Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

- Bayesian optimization (BO) has been extended to the federated setting,
 yielding the federated Thompson sampling (FTS) algorithm (Dai et. al., 2020)
- FTS facilitates collaborative black-box optimization without sharing raw data:
 - Multiple mobile phone users can collaborate to optimize the hyperparameters of their deep neural networks for a smart keyboard
 - Multiple hospitals can collaborate to select patients for performing a medical test

- Rigorous privacy preservation has been an important consideration for both federated learning (FL) and BO.
- However, the FTS algorithm (Dai et. al., 2020) is not equipped with a rigorous preservation of the privacy of the users/agents.

Differential Privacy

- Differential Privacy (DP) has been widely used in privacy-preserving ML
 - DP-SGD: adding DP to the training of DNN
 - DP-FedAvg: adding DP to FL to preserve the user-level privacy

An adversary cannot infer whether a user has participated in the algorithm

Differential Privacy

- Differential Privacy (DP) has been widely used in privacy-preserving ML
 - DP-SGD: adding DP to the training of DNN
 - DP-FedAvg: adding DP to FL to preserve the user-level privacy

An adversary cannot infer whether a user has participated in the algorithm

- An algorithm satisfying user-level (ϵ, δ) -DP ensures that adding/removing any single user has an imperceptible impact on its output.
- Smaller ϵ and δ indicate a better privacy guarantee

Differential Privacy

- Both DP-SGD and DP-FedAvg follow a general framework for adding DP to generic iterative algorithms
 - Apply a subsampled Gaussian mechanism in every iteration

preserves user-level privacy

- The general DP framework is able to handle different parameter vectors
 - E.g., parameters from different layers of a DNN

- The general DP framework is able to handle different parameter vectors
 - E.g., parameters from different layers of a DNN

- The general DP framework is able to handle different parameter vectors
 - E.g., parameters from different layers of a DNN

- **1.** Subsample: select every agent w.p. *q*
- **2.** Clip: $||\omega_{1,n}||_2 \leq S$
- 3. Weighted average, add Gaussian noise with std. prop. to *S* and *z*

DP-FTS (without DE)

Shared by all agents

• Given observations $(\mathbf{x}_1^n, y_1^n), \dots, (\mathbf{x}_t^n, y_t^n)$, sample $\boldsymbol{\omega}_{n,t}$ from posterior of $\boldsymbol{\omega}$ (sampled function: $f_{n,t}(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\omega}_{n,t}$)

DP-FTS (without DE)

Shared by all agents

Given observations $(\mathbf{x}_1^n, y_1^n), \dots, (\mathbf{x}_t^n, y_t^n)$, sample $\boldsymbol{\omega}_{n,t}$ from posterior of $\boldsymbol{\omega}$ (sampled function: $f_{n,t}(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\omega}_{n,t}$)

(P=2)

Distributed Exploration (DE)

Distributed Exploration (DE)

Distributed Exploration (DE)

Theoretical Analysis

Proposition 1 (Privacy Guarantee). There exist constants c_1 and c_2 such that for fixed q and T and any $\epsilon < c_1 q^2 T$, $\delta > 0$, DP-FTS-DE (Algo. 1) is (ϵ, δ) -DP if $z \ge c_2 q \sqrt{T \log(1/\delta)}/\epsilon$.

Theorem 1 (Utility Guarantee). Define $C_t \triangleq \{n \in [N] | ||\omega_{n,t}||_2 > S/\sqrt{P}\}$. W.p. $\geq 1 - \delta$,

$$R_T^1 = \tilde{\mathcal{O}}\left(\left(B + 1/p_1\right)\gamma_T\sqrt{T} + \sum_{t=1}^T \psi_t + B\sum_{t=1}^T \vartheta_t\right)$$

where
$$\psi_t \triangleq \tilde{\mathcal{O}}((1-p_t)P\varphi_{\max}q^{-1}(\Delta_t + zS\sqrt{M}))$$
, $\Delta_t \triangleq \sum_{n=1}^N \Delta_{n,t}$, $\Delta_{n,t} \triangleq \tilde{\mathcal{O}}(\varepsilon Bt^2 + B + \sqrt{M} + d_n + \sqrt{\gamma_t})$, and $\vartheta_t \triangleq (1-p_t)\sum_{i=1}^P \sum_{n \in \mathcal{C}_t} \varphi_n^{(i)}$.

Privacy-utility trade-off

Theoretical Analysis

Proposition 1 (Privacy Guarantee). There exist constants c_1 and c_2 such that for fixed q and T and any $\epsilon < c_1 q^2 T$, $\delta > 0$, DP-FTS-DE (Algo. 1) is (ϵ, δ) -DP if $\geq c_2 q \sqrt{T \log(1/\delta)}/\epsilon$.

Theorem 1 (Utility Guarantee). Define $C_t \triangleq \{n \in [N] | ||\omega_{n,t}||_2 > S/\sqrt{P}\}$. W.p. $\geq 1 - \delta$,

$$R_T^1 = \tilde{\mathcal{O}}\left(\left(B + 1/p_1\right)\gamma_T\sqrt{T} + \sum_{t=1}^T \psi_t + B\sum_{t=1}^T \vartheta_t\right)$$

where
$$\psi_t \triangleq \tilde{\mathcal{O}}((1-p_t)P\varphi_{\max}q^{-1}(\Delta_t + \mathcal{O}S\sqrt{M})), \ \Delta_t \triangleq \sum_{n=1}^N \Delta_{n,t}, \ \Delta_{n,t} \triangleq \tilde{\mathcal{O}}(\varepsilon Bt^2 + B + \sqrt{M} + d_n + \sqrt{\gamma_t}), \ and \ \vartheta_t \triangleq (1-p_t)\sum_{i=1}^P \sum_{n \in \mathcal{C}_t} \varphi_n^{(i)}.$$

- Privacy-utility trade-off
 - Larger z (larger noise variance) -> better privacy (Prop. 1) & worse utility (Theorem 1)

Theoretical Analysis

Proposition 1 (Privacy Guarantee). There exist constants c_1 and c_2 such that for fixed q and T and any $\epsilon < c_1 q^2 T$, $\delta > 0$, DP-FTS-DE (Algo. 1) is (ϵ, δ) -DP if $z \ge c_2 q \sqrt{T \log(1/\delta)}/\epsilon$.

Theorem 1 (Utility Guarantee). Define $C_t \triangleq \{n \in [N] | ||\omega_{n,t}||_2 > S/\sqrt{P}\}$. W.p. $\geq 1 - \delta$,

$$R_T^1 = \tilde{\mathcal{O}}\left(\left(B + 1/p_1\right)\gamma_T\sqrt{T} + \sum_{t=1}^T \psi_t + B\sum_{t=1}^T \vartheta_t\right)$$

where
$$\psi_t \triangleq \tilde{\mathcal{O}}((1-p_t)P\varphi_{\max}q^{-1}(\Delta_t + zS\sqrt{M}))$$
, $\Delta_t \triangleq \sum_{n=1}^N \Delta_{n,t}$, $\Delta_{n,t} \triangleq \tilde{\mathcal{O}}(\varepsilon Bt^2 + B + \sqrt{M} + d_n + \sqrt{\gamma_t})$, and $\vartheta_t \triangleq (1-p_t)\sum_{i=1}^P \sum_{n \in \mathcal{C}_t} \varphi_n^{(i)}$.

- Privacy-utility trade-off
 - Larger z (larger noise variance) -> better privacy (Prop. 1) & worse utility (Theorem 1)
 - Larger q (more selected agents in an iteration) -> worse privacy (Prop. 1) & better utility (Theorem 1)

Theoretical Analysis

Proposition 1 (Privacy Guarantee). There exist constants c_1 and c_2 such that for fixed q and T and any $\epsilon < c_1 q^2 T$, $\delta > 0$, DP-FTS-DE (Algo. 1) is (ϵ, δ) -DP if $z \ge c_2 q \sqrt{T \log(1/\delta)}/\epsilon$.

Theorem 1 (Utility Guarantee). Define $C_t \triangleq \{n \in [N] | ||\omega_{n,t}||_2 > S/\sqrt{P}\}$. W.p. $\geq 1 - \delta$,

$$R_T^1 = \tilde{\mathcal{O}}\left(\left(B + 1/p_1\right)\gamma_T\sqrt{T} + \sum_{t=1}^T \psi_t + B\sum_{t=1}^T \vartheta_t\right)$$

where
$$\psi_t \triangleq \tilde{\mathcal{O}}((1-p_t)P\varphi_{\max}q^{-1}(\Delta_t + 2S\sqrt{M}))$$
, $\Delta_t \triangleq \sum_{n=1}^N \Delta_{n,t}$, $\Delta_{n,t} \triangleq \tilde{\mathcal{O}}(\varepsilon Bt^2 + B + \sqrt{M} + d_n + \sqrt{\gamma_t})$, and $\vartheta_t \triangleq (1-p_t)\sum_{i=1}^P \sum_{n \in \mathcal{C}_t} \varphi_n^{(i)}$.

- Two conflicting impacts of S (clipping threshold)
 - A smaller $m{S}$ reduces the value of ψ_t -> better regret (due to smaller noise variance)
 - A smaller S increases the cardinality of the set C_t -> worse regret (due to clipping more vectors)

Choose a small S, while ensuring a small number of vectors are clipped

Synthetic Experiments

- Impact of *P* (number of sub-regions in DE) on FTS
 - Larger *P* improves the performance

- Impact of S (the clipping threshold)
 - Overly small S -> more vectors clipped
 - Overly large S -> more noises added

Synthetic Experiments

- Impact of q (prob. of selecting an agent)
 - Larger q improves utility & deteriorates privacy

- Impact of z (prop. to noise variance)
 - Larger z deteriorates utility & improves privacy

Real-world Experiments

- Privacy-utility trade-off:
 - More to the left: better privacy
 - More to the bottom: better utility

Landmine detection (N=29), hyper tuning for SVM

Activity recognition using mobile phone (N=30), hyper tuning for logistic regression

EMNIST (N=50), hyper tuning for CNN

Real-world Experiments

- Privacy-utility trade-off:
 - Convergence

Landmine detection

Activity recognition using mobile phone

EMNIST

Thank you!