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Tiger cat √  

Non-targeted: any wrong class 
(relevant class is sufficient)

Targeted: specific class
 (could be highly irrelevant)

Non-targeted vs. targeted adversarial images

Persian cat 

 Airplane 

2

＋ =

＋ =



Transferability of targeted adversarial images
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Source model (white box) : ResNet50
Target model (black box) : DenseNet121, VGG16, Inception-v3
Originl class: “hummingbird”      Target class: “coffee mug”
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Existing targeted transfer methods
• Simple methods: (reputed to be) insufficient.

- Gradient accumulation (MI[1], NI[2])
- Data augmentation (TI[3], DI[4])

• Resource-intensive methods: SOTA.
- Training target-class-specific classifiers (FDA[5,6])
- Training target-class-specific generators (CDA[7], TTP[8])
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Main message

Previous research: Simple methods  << resource-intensive methods 
Our investigation:   Simple methods   >  resource-intensive methods
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Transfer success rates (%) 
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New insights into simple methods
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1. Targeted transferability requires more iterations to converge.
→ Unreasonable evaluation (only <20 iterations).

• optimization perspective: meaningless.
• practical perspective: unrealistic. 

ResNet50       DenseNet121 (TI,MI,DI)
non-targeted

targeted
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2. Cross-Entropy (CE) loss causes decreasing gradient problem.
→ We use a naive Logit loss (not novel but its advantage has not been recognized so far).

New insights into simple methods

CE (non-targeted)

CE (targeted)

Logit (targeted)

ResNet50       DenseNet121 (TI,MI,DI)
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New realistic transfer scenarios 

1. Ensemble transfer scenario with low model similarity.

2. Worse-case transfer scenario with low-ranked targets.

3. Transfer scenario on a real-world system, Google Cloud Vision API.



Logit loss largerly outperforms the others in ensemble transfer with low model similarity.

9

Equally high performance in ensemble transfer with high model similarity.

↓

Scenario 1: ensemble transfer with low model similarity
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Targeted transfer is harder for lower-ranked target classes.

Scenario 2: worse case with low-ranked target classes
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Successful targeted adversarial images.     

Scenario 3: real-world attack on Google Cloud Vision API

Logit achieves substantial success rates (%).     



Three future directions
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Finding: Transferability on specific models (Inception) are very low. 
→ 1. Understanding influence of model architectures on transferability.

Finding: Robust models may have different transfer properties.
→ 2. Exploring targeted transferability on robust models.

Finding: Simple and resource-intensive methods have different merits.
→ 3. Conducting a comprehensive comparison between these two types.
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Thank you!


