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1 Types of Neural Solver for VRPs: Construction / Improvement
Different from construction solvers, improvement solvers need to encode VRP solutions properly.
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2 Although Transformer has been shown effective for processing sequence data,
its positional encoding (PE) may not be optimal for encoding VRP solutions.
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can bring unreasonable noises and
random biases to the encoder)
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Node Positional Features:
Position of node in the

solution sequence

3. For Encoding Linear
Sequences Only

(Limitation: cannot capture the
circularity and symmetry of VRP
solution, significantly hurt
generalization performance)

‘\ 2. Learning a Unified Set of

Embeddings

(Limitation: may cause
disharmony or disturbance for

VRP tasks)



3. Our Proposed Method and Main Contribution
a) Dual-Aspect Representation - Better Transformer-style encoder for VRPs
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3. Our Proposed Method and Main Contribution
b) Cyclic Positional Encoding

e We enable Transformer for encoding cyclic sequences
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Figure 5: Comparison of our CPE method with absolute PE method on a TSP instance with 20 nodes.

(a) the embedding vectors, (b) the correlations (dot products) between every two embeddings, and (c)
the top two principal components after PCA (principal component analysis) projection.
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3. Our Proposed Method and Main Contribution
b) Cyclic Positional Encoding -> Better Generalization on synthetic and benchmark instances

Table 2: Generalization performance. (a) DACT v.s. baselines on benchmark datasets (up to 200
customers, see Appendix @]for detailed results and discussion); (b) PE v.s. CPE on different sizes.

Method TSPLIB CVRPLIB N=20 N=100
Method Obi G Obi G
OR-Tools [37] 3.34% 8.06% J- ap i P
AM-sampling [5] 22.83% 26.66% DACT-PE (T=5k) 384 021% 838 7.93%
POMO [8] 10.06% 6.10% DACT-CPE (T=5k) 383 0.10% 7.99 2.98%
Wuetal. [11] 4.17% 5.20% Wuetal. [11](T=5k) 391 2.14% 9.03 16.37%
DACT 2.07 % 3.41% OR-Tools [37] 383 0.00% 8.06 3.87%
(a) (b)
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Figure 6: Visualization of the attention scores for the encoder when a trained model is used to solve
instances with a larger size. (a) using PE method; (b) using CPE method (ours).



3. Our Proposed Method and Main Contribution

¢) Curriculum Learning strategy - Better RL algorithm for Neural Combinatorial Optimization

Training with n-step PPO and a Curriculum Learning Strategy:
e Our CL strategy:

o gradually prescribes higher-quality solutions as the initial states for training.

e Benefits:
o  Better sample efficiency while
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Figure 7: Training curves of PPO with and
without CL on CVRP20 (random seeds 1-5).



4. Results on TSP and CVRP

Our DACT advances the current SOTA on learning purely data-driven improvement VRP solver.

N=20 N=50 N=100
Mcthad H Obj. Gap Time ‘ Obj. Gap Time ‘ Obj. Gap Time
Concorde 3.83 - (3m) 5.70 - (10m) 7.76 - (1h)
LKH 3.83  0.00%  (38s) 5.70 0.00%  (5m) 7.76 0.00%  (20m)
OR-Tools 3.86  0.94%  (42s) 5.85 2.87%  (5m) 8.06 3.86%  (23m)
Neural-2-Opt [23] 3.84F  0.00%  (15m) 5.70 0.12%  (29m) 7.83 0.87%  (41m)
Wuetal. [11](T=5k) || 3.83  0.00% (1h) 5708  020%  (1.5h) 7.87 1.42%  (2h)
DACT (T=1k) 3.83  0.04%  {7s}(24s) 5.70 0.14%  {16s}(1m) | 7.89 1.62%  {48s}(4m)
a.  DACT (T=5k) 383  0.00%  {32s})(2m) | 5.70 0.02%  {2m}(6m) | 7.81 0.61%  {4m}(18m)
£ DACT (T=10k) 383 0.00%  {Im}(5m) 5.70 0.01%  {3m}(13m) | 7.79 0.37%  {8m}(40m)
DACT x4 augment 383 0.00%  {3m}(10m) | 5.70 0.00%  {10m}(1h) | 7.7 0.09%  {29m}(2.5h)
GCN-BS [6] 3.84F  0.01%  (12m) 5.70 0.01%  (18m) 7.87 1.39%  (40m)
AM-sampling [5] 3.84F  0.08%  (5Sm) 5.73 0.52%  (24m) 7.94 2.26%  (1h)
MDAM-BS [7] 3.844  0.00%  (3m) 5.70 0.03%  (14m) 7.79 0.38%  (44m)
POMO [8] 3.83  0.04%  (ls) 5708 021%  (2s) 7.80 0.46%  (11s)
POMOxS8 augment [8] || 3.83  0.00%  (3s) 569  0.03%  (16s) 778 0.15%  (1m)
DPDP (100k) [26] = : : - - - 7771 0.00%  (3h)
CVAE-Opt-DE [13] . 0.00%# 11m# = 0.02%#* 22m# - 0.34%#  55m#
LKH 6.14  0.00% 1h 10.38  0.00%  4h 1568  0.00%  8h
OR-Tools 646  5.68%  2m 1127  861%  13m 1712 9.54%  46m
NeuRewriter [4] 6.15# - 6m# 10.51# S 11m# 16.10# 2 17m#
NLNS [27] 6.19% - 6m# 10.54%# > 11m# 15.99# 5 16m#
Wuetal. [11](T=5k) | 6.12f 0.39%  (2h) 1045  0.70%  (4h) 1603t  247%  (5h)
a. DACT (T=1k) 6.15  0.28% {16s)(33s) | 10.61  2.13%  {43s}2m) | 16.17  3.18%  {2m}(5m)
& DACT (T=5k) 613  -0.00%  {Im}(3m) 1048  1.01%  {3m}(8m) 1592 1.55%  {8m}(23m)
© DACT (T=10k) 613  -0.04%  {2m}(6m) 1046  0.79%  {6m}(16m) | 1585 1.12%  {16m}(45m)
DACT x6 augment 613  -0.08% {11m}(35m) | 10.39  0.14%  {32m}(1.5h) | 1571  0.19%  {1.5h}(4.5h)
AM-sampling [5] 625 1.87%  (6m) 10.62  2.40%  (28m) 1623t 372%  (2h)
MDAM-BS [7] 614  0.18%  (5m) 1048  098%  (15m) 1599t  2.23%  (lh)
POMO [8] 6171 0.82%  (1s) 1049  1.14%  (4s) 1583  0.98%  (19s)
POMOXS8 augment [8] || 6.14%  0.21%  (55) 1042 045%  (26s) 1573 032%  (2m)
DPDP (100k) |26 . : . : - = 1569F 031%  (6h)
CVAE-Opt-DE [13] 6.14% - 21m# 10.40% - 41m# 1575#% - 1.5h#

# the obj. values, gaps or time are obtained based on 2,000 instances in their original papers, and not directly comparable to ours.
¥ the obj. values obtained by Concorde or LKH may be slightly different from ours since the 10,000 instances are randomly generated. E.g., for
TSP50, the optimal values according to our running of Concorde is 5.70, while 5.69 in POMO and Wu et al.. We thus focus more on gaps.



