Friendship paradox In which friend list am I likely to appear? to appear in the B's friend list ## Friendship paradox ## Your friends have more friends than you do (on average) ...because more friends someone has, more likely the someone appears in your friend list. Can introduce biases in graph embeddings #### Residual2Vec: Debiasing graph embedding using random graphs arXiv.org https://arxiv.org/abs/2110.07654 **Jisung Yoon** **Isabel Constantino** Yong-Yeol Ahn # Graph embedding Word embedding nary code with which the present Is may take various forms, all of e property that the symbol (or epresenting each number (or sign differs from the ones representi er and the next higher number (litude) in only one digit (or puls Because this code in its primar; built up from the conventional a sort of reflection process and I rms may in turn be built up from in similar fashion, the conventional and its primary in turn be built up from in similar fashion, the convention in i which has as yet no recognized nated in this specification and s the "reflected binary code." a receiver station, reflected binar # How to generate the sequence from a graph? #### Random walker ### Friendship paradox The walker is likely to visit a node with many friends. Following edges is a *biased* sampling that preferentially leads the walker to nodes with many neighbors. #### Toy example #### Toy example #### Toy example Core nodes are overrepresented due to the friendship paradox! ## Does the sampling bias have negative impact? word2vec trained with negative sampling has an overlooked built-in debiasing feature! We demonstrate how to leverage this feature to debias other biases! Negative Sampling is used for training word2vec* #### L Noise Contrastive Estimation (NCE) ^{*}Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. "InDistributed Representations of Words and Phrases and Their Compositionality." In *Advances in Neural Information Processing Systems*, 1389–99. #### Language Noise Contrastive Estimation (NCE) ^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In *Proceedings of the Thirteenth International* Conference on Artificial Intelligence and Statistics, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR. #### **► Noise Contrastive Estimation (NCE) →** k random context Context Center $$Y_{\circ} = Y_{\circ} = Y_{\circ} = 0$$ $$Y_{\bullet} = 1$$ $$P(Y_{ullet} = 1 | ullet) \propto rac{P(ullet | Y_{ullet} = 1)}{P(ullet)} P(Y_{ullet} = 1)$$ Posterior Likelihood $P(Y_{ullet | Y = 1}) = \begin{cases} P_{w2v}(ullet | ullet) & (Y = 1) \\ P_0(ullet) & (Y = 0) \end{cases} \quad P(Y = 1) = rac{1}{k+1}$ ^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR. #### Language Noise Contrastive Estimation (NCE) #### NCE is asymptomatically unbiased for $$P_{\text{w2v}} \left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right) = \frac{1}{Z} \exp \left(\mathbf{u}_{\text{center}}^{\top} \mathbf{v} \right)$$ ^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR. #### **Noise Contrastive Estimation (NCE)** $$P(Y_{\bullet}=1|\bullet) = \frac{1}{1+\exp\left(-\mathbf{u}_{\bullet}^{\mathsf{T}}\mathbf{v}_{\bullet}+\ln P_{0}(\bullet)+c\right)} = \frac{1}{1+\exp\left(-f(x)+\ln P_{0}(x)+c\right)}$$ $$= ^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR. #### **Noise Contrastive Estimation (NCE)** #### **Negative sampling*** $$P(Y = 1|x)$$ $$= \frac{1}{1 + \exp(-f(x) + \ln P_0(x) + c)}$$ asymptomatically unbiased for $$\downarrow$$ $$P(x) = \frac{1}{Z} \exp(f(x))$$ $$P(Y = 1|x)$$ $$= \frac{1}{1 + \exp(-f(x) + \ln P_0(x) + c)}$$ $$= \frac{1}{1 + \exp[-(f(x) + \ln P_0(x)) + \ln P_0(x) + c]}$$ $$f'(x)$$ $$\text{asymptomatically unbiased for}$$ $$P(x) = \frac{1}{Z'} \exp(f'(x))$$ $$P(x) = \frac{1}{Z'} P_0(x) \exp(f(x))$$ ## word2vec trained with Skip-gram Negative sampling (SGNS) is asymptomatically unbiased for #### Built-in debiasing feature for frequency bias! $$P_{\text{w2v}}\left(\mathbf{e} \mid \mathbf{o}\right) = \frac{1}{Z} P_0(\mathbf{e}) \exp\left(\mathbf{u} \cdot \mathbf{v}\right)$$ $$\sim P_0(\Theta) \propto \{ \text{Frequency of } \Theta \}^{\gamma}$$ Sampling bias due to the friendship paradox* $$\left\{ \begin{array}{c} \text{Frequency of } \\ \text{in the sentence} \end{array} \right\} \propto \left\{ \begin{array}{c} \text{\# neighbors of } \\ \text{in the graph} \end{array} \right\}$$ The friendship paradox has *no effect* thanks to *the built-in debiasing feature* of SGNS word2vec if $\gamma = 1$. #### Residual2Vec $$P_{\text{r2v}}(\mathbf{e} | \mathbf{e}) = \frac{1}{Z} P_0(\mathbf{e} | \mathbf{e}) \exp(\mathbf{u} \mathbf{v})$$ # Model the baseline explicitly to control bias #### Residual2Vec #### How can we model the baseline? #### Can be done analytically without simulations! ### Performed the best or nearly the best for all the six graphs of different domains # The best or the second best performer for a community detection benchmark #### Case studies Citation graph of academic issues Constructed using the Web of Science 240K issues and 250M citations #### Glove* ^{*}Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*. 2014. #### Residual2Vec (temporal biases are debiased) Glove # Predicted the impact factor and the subject of journals well #### Prediction based on embedding #### Summary ### word2vec has a built-in debiasing feature attributed to negative sampling Inspired by this finding, propose *residual2vec* that can negate other types of structural biases Good performance and enable more control on the biases in embedding. #### Discussion # We demonstrated a new potential of negative sampling as a way to mitigate bias in representations MIT Connection Science the technology of innovation #### Residual2Vec: Debiasing graph embedding using random graphs https://arxiv.org/abs/2110.07654 github.com/skojaku/residual2vec skojaku@iu.edu Sadamori Kojaku **Jisung Yoon** **Isabel Constantino** Yong-Yeol Ahn