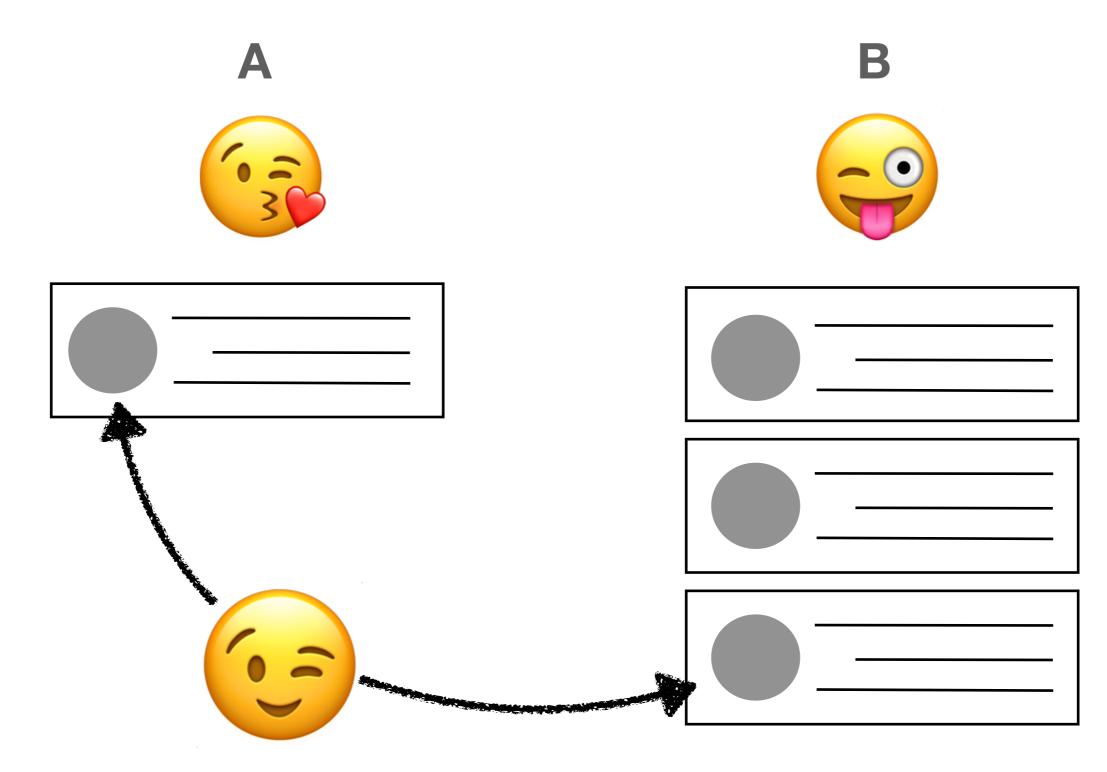
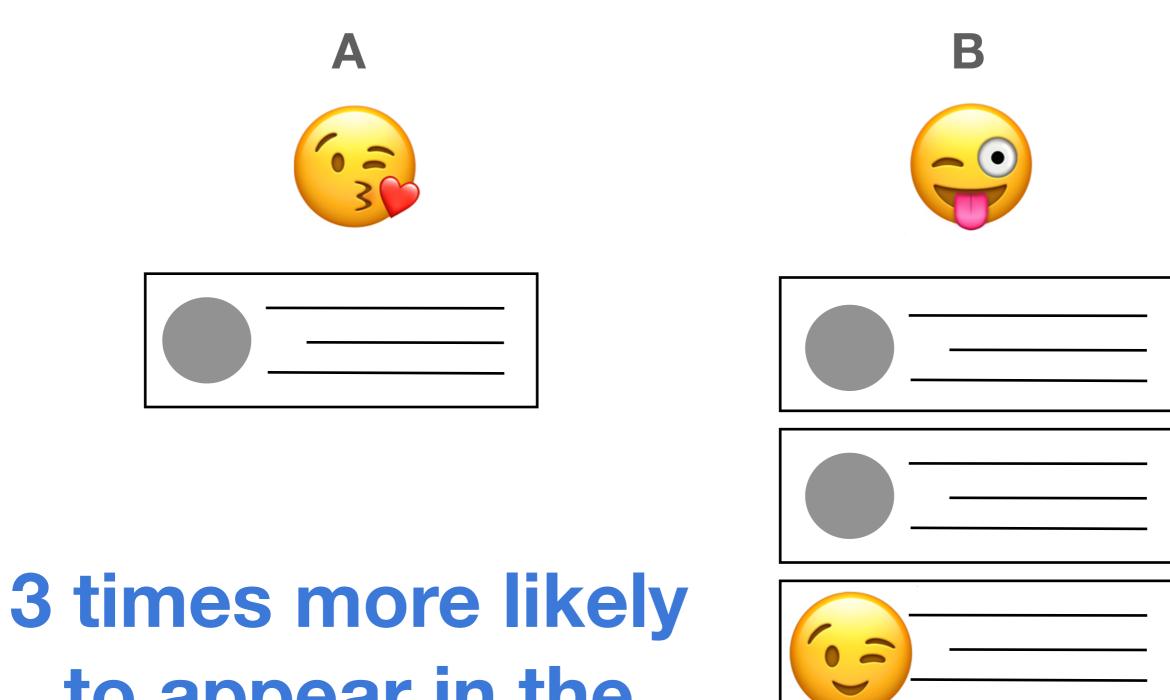
Friendship paradox



In which friend list am I likely to appear?



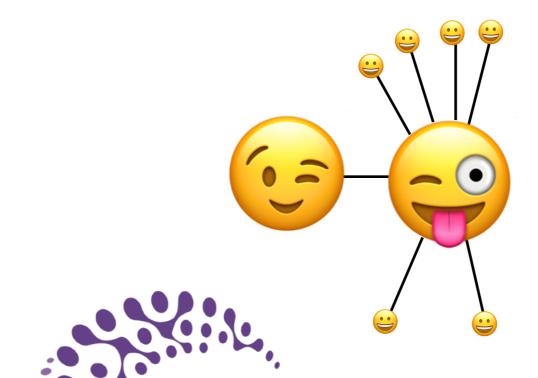
to appear in the B's friend list

Friendship paradox

Your friends have more friends than you do (on average)

...because more friends someone has, more likely the someone appears in your friend list.

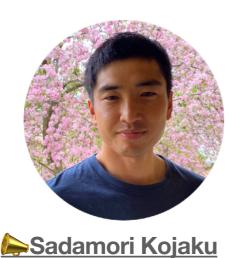
Can introduce biases in graph embeddings



Residual2Vec: Debiasing graph embedding using random graphs

arXiv.org

https://arxiv.org/abs/2110.07654

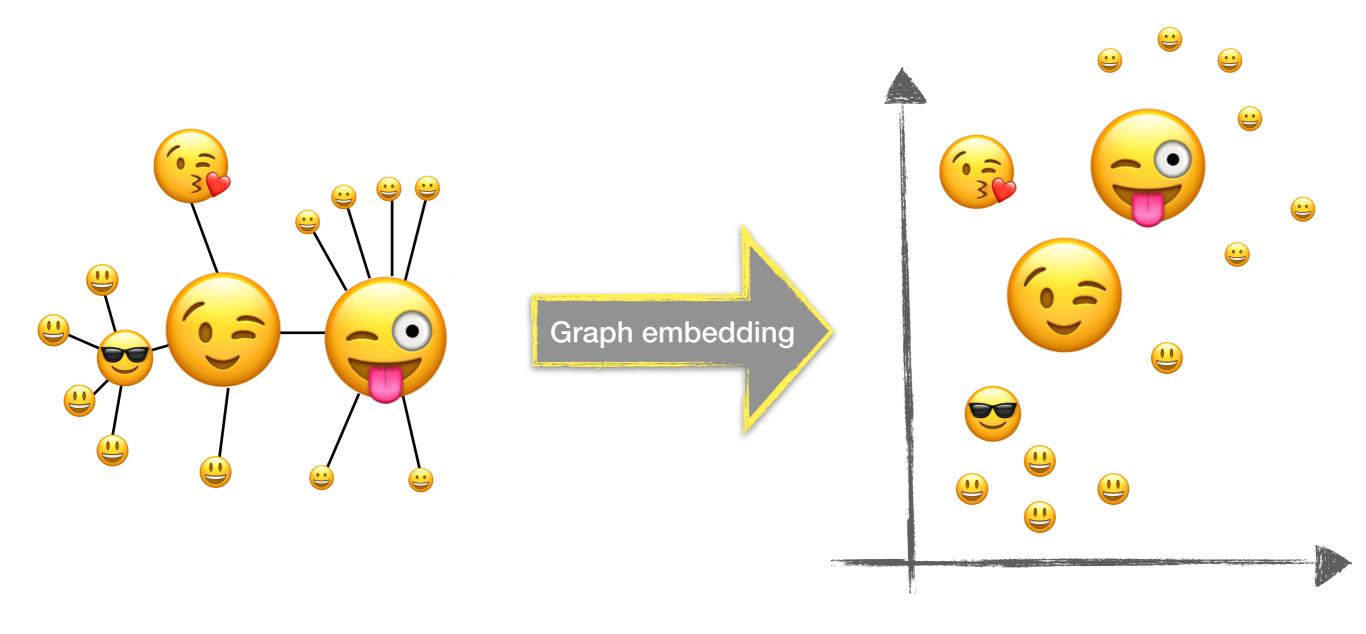


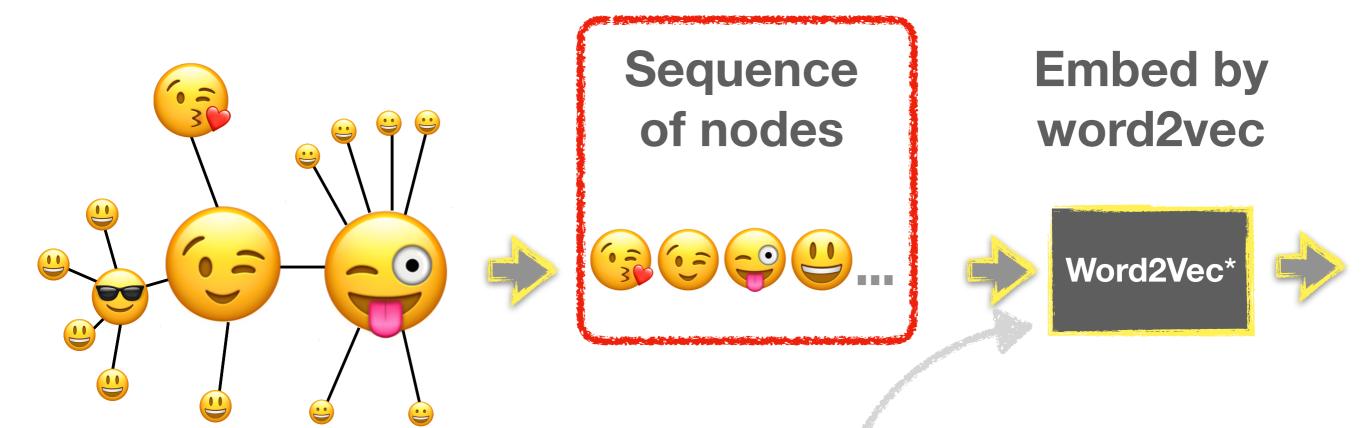
Jisung Yoon

Isabel Constantino

Yong-Yeol Ahn

Graph embedding





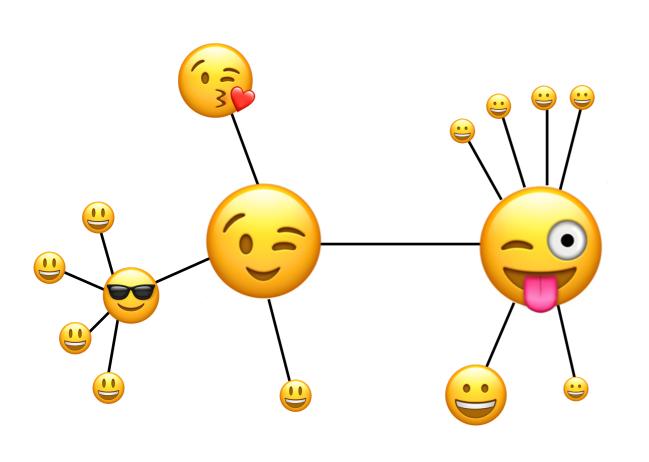
Word embedding

nary code with which the present Is may take various forms, all of e property that the symbol (or epresenting each number (or sign differs from the ones representi er and the next higher number (litude) in only one digit (or puls

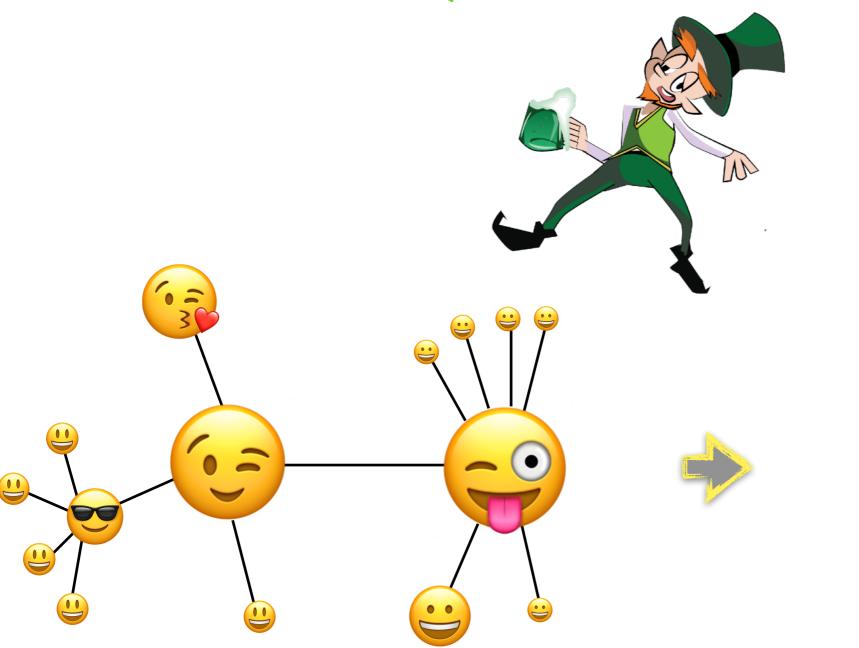
Because this code in its primar; built up from the conventional a sort of reflection process and I rms may in turn be built up from in similar fashion, the conventional and its primary in turn be built up from in similar fashion, the convention in the convention i

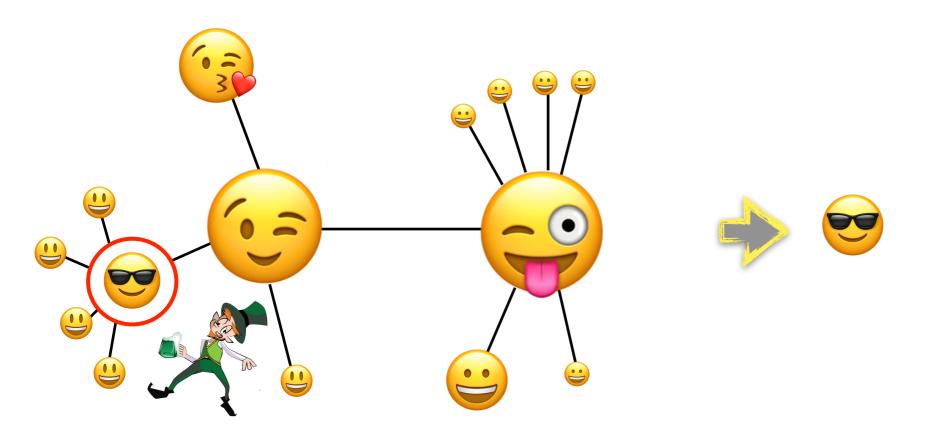
which has as yet no recognized nated in this specification and s the "reflected binary code." a receiver station, reflected binar

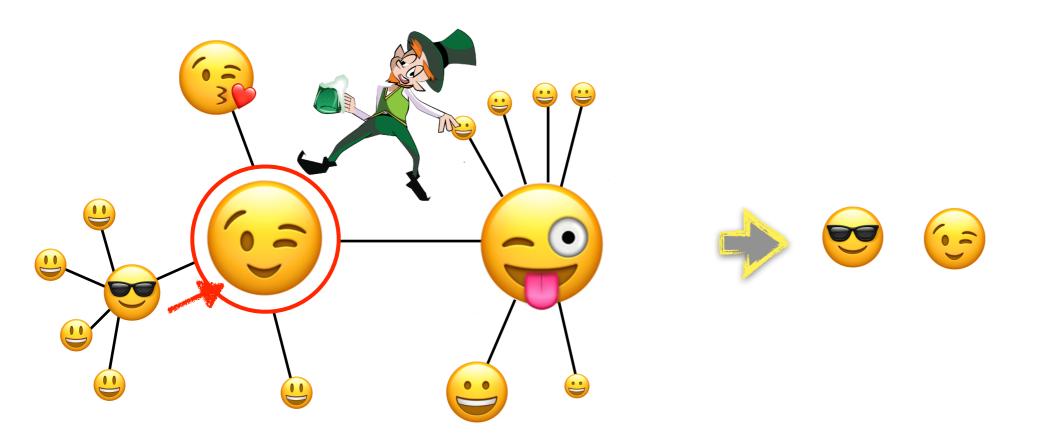
How to generate the sequence from a graph?

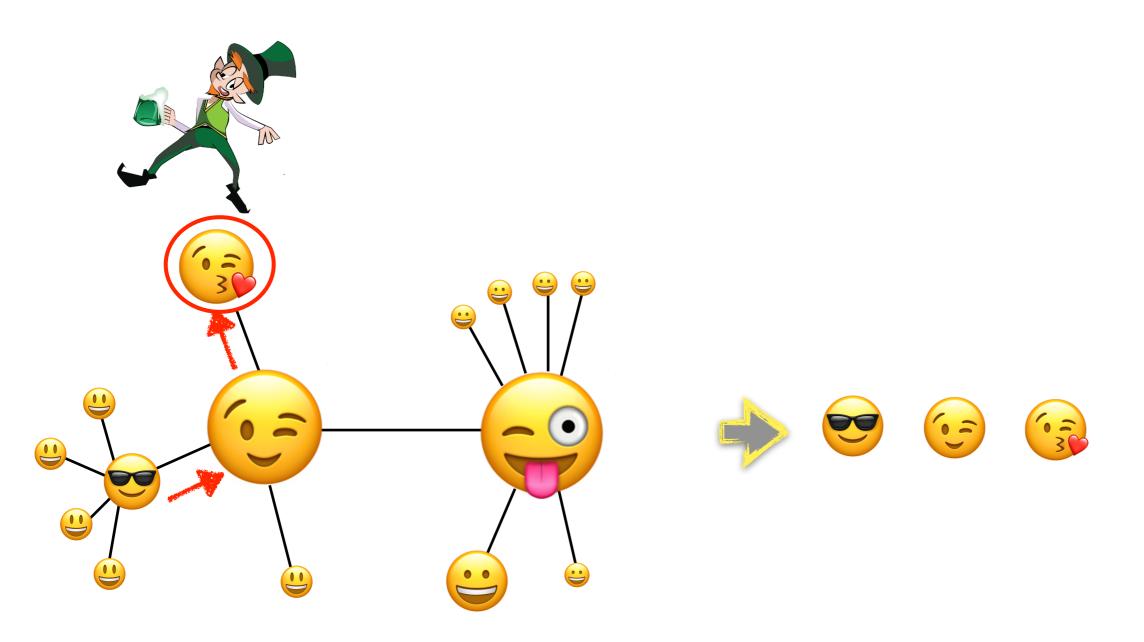


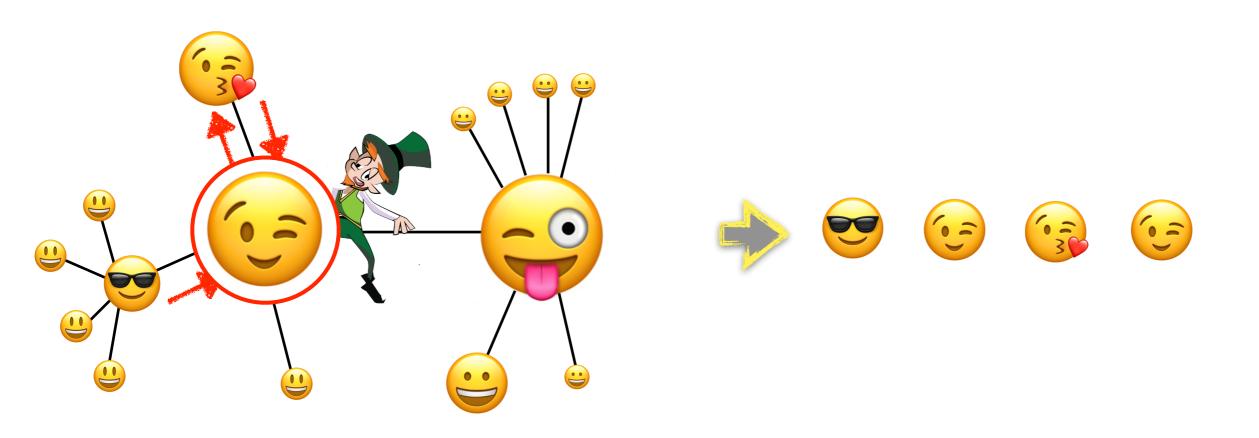
Random walker

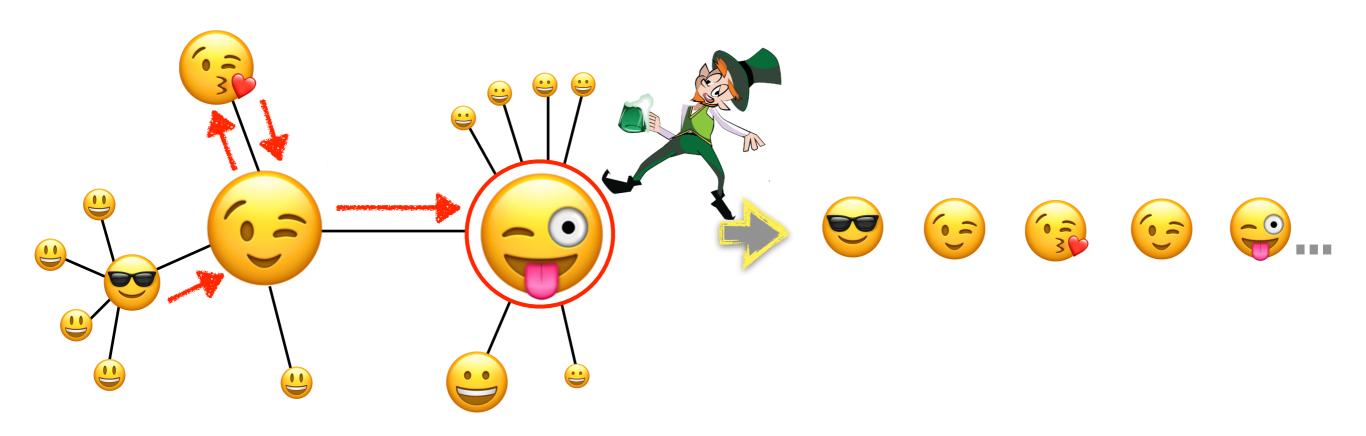




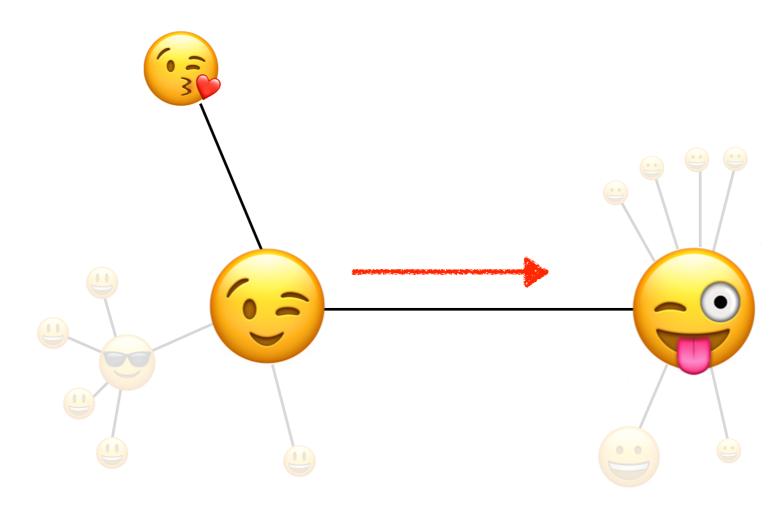








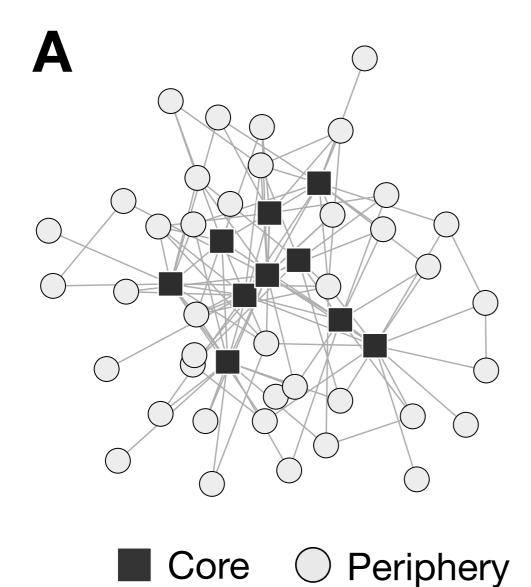
Friendship paradox



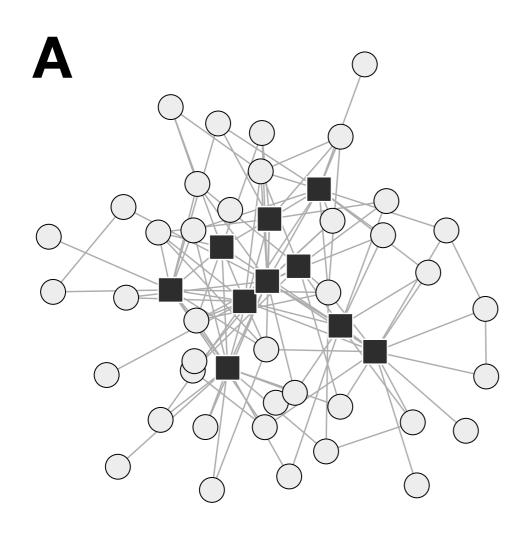
The walker is likely to visit a node with many friends.

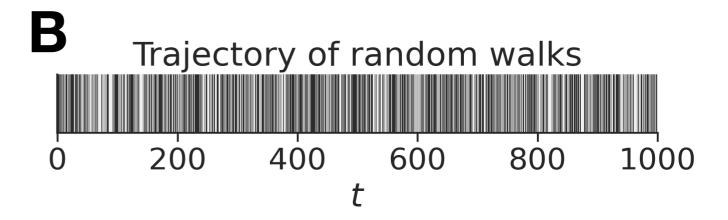
Following edges is a *biased* sampling that preferentially leads the walker to nodes with many neighbors.

Toy example

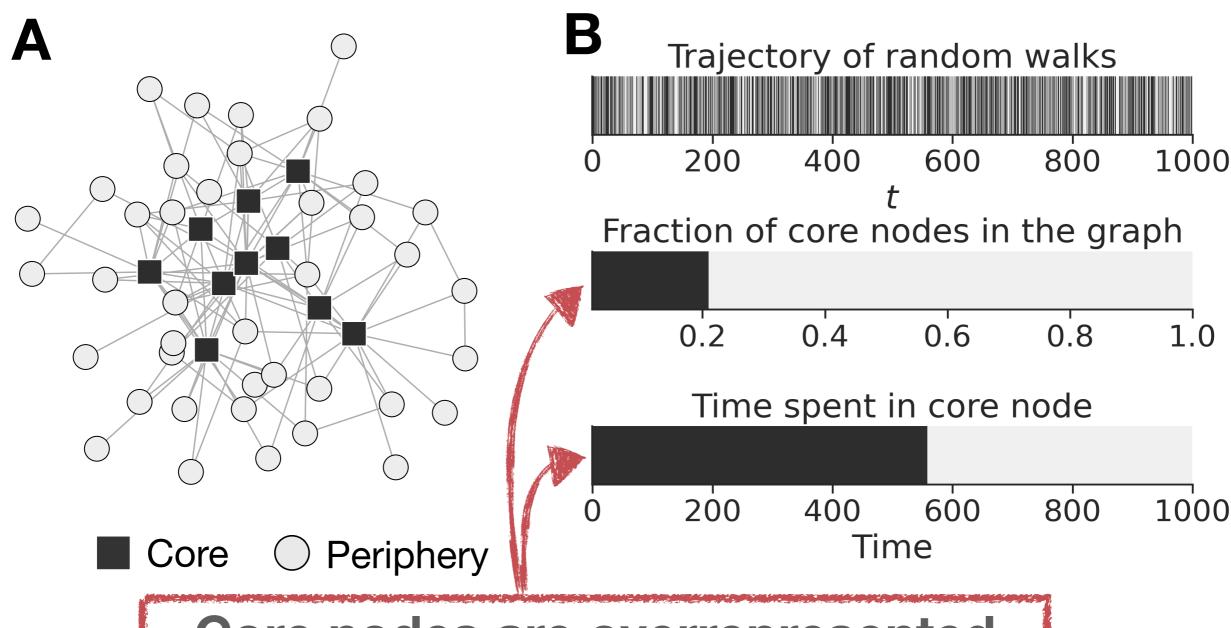


Toy example





Toy example

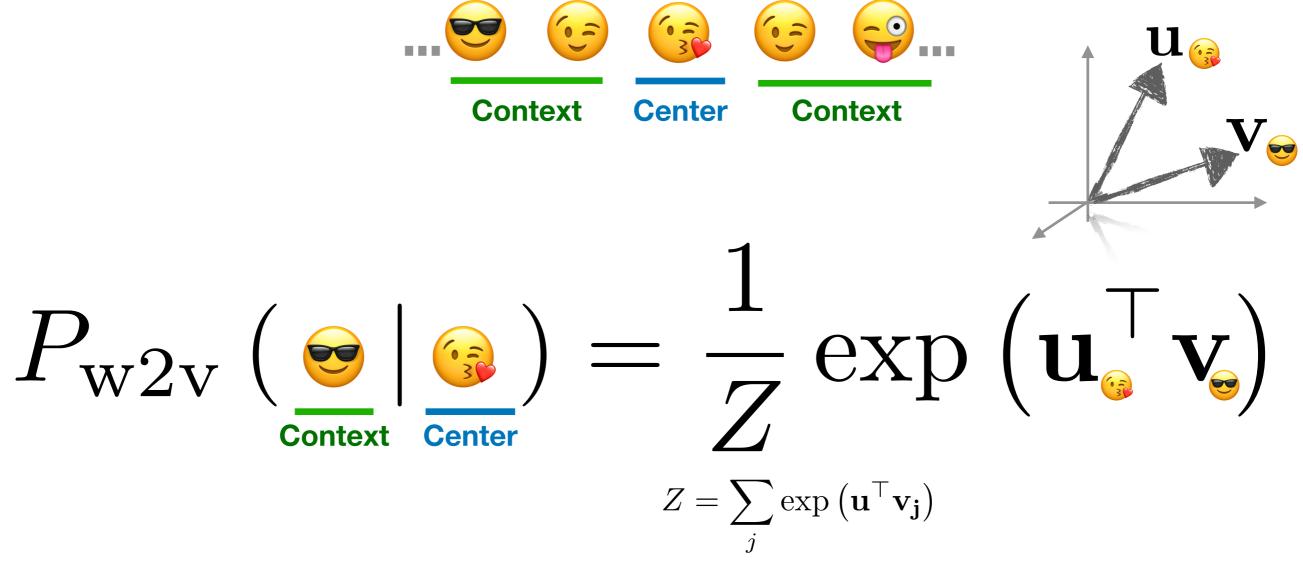


Core nodes are overrepresented due to the friendship paradox!

Does the sampling bias have negative impact?

word2vec trained with negative sampling has an overlooked built-in debiasing feature!

We demonstrate how to leverage this feature to debias other biases!



Negative Sampling is used for training word2vec*

L Noise Contrastive Estimation (NCE)

^{*}Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. "InDistributed Representations of Words and Phrases and Their Compositionality." In *Advances in Neural Information Processing Systems*, 1389–99.

Language Noise Contrastive Estimation (NCE)

^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In *Proceedings of the Thirteenth International* Conference on Artificial Intelligence and Statistics, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR.

► Noise Contrastive Estimation (NCE) →

k random context

Context

Center

$$Y_{\circ} = Y_{\circ} = Y_{\circ} = 0$$

$$Y_{\bullet} = 1$$

$$P(Y_{ullet} = 1 | ullet) \propto rac{P(ullet | Y_{ullet} = 1)}{P(ullet)} P(Y_{ullet} = 1)$$

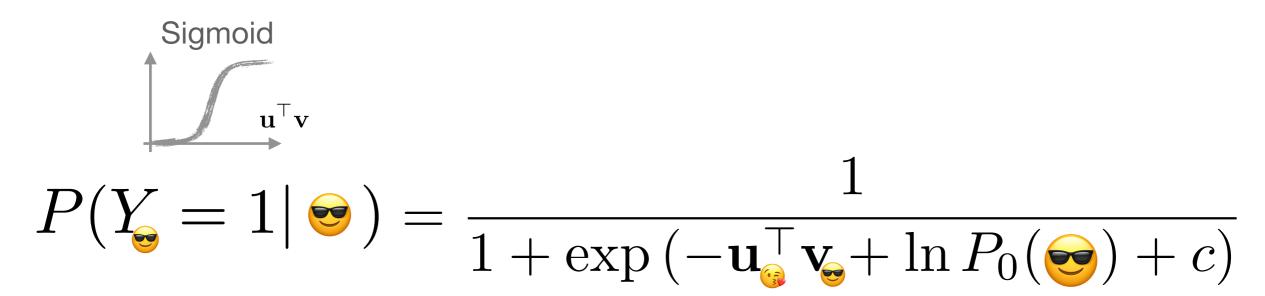
Posterior

Likelihood

 $P(Y_{ullet | Y = 1}) = \begin{cases} P_{w2v}(ullet | ullet) & (Y = 1) \\ P_0(ullet) & (Y = 0) \end{cases} \quad P(Y = 1) = rac{1}{k+1}$

^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR.

Language Noise Contrastive Estimation (NCE)



NCE is asymptomatically unbiased for

$$P_{\text{w2v}} \left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right) = \frac{1}{Z} \exp \left(\mathbf{u}_{\text{center}}^{\top} \mathbf{v} \right)$$

^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR.

Noise Contrastive Estimation (NCE)

$$P(Y_{\bullet}=1|\bullet) = \frac{1}{1+\exp\left(-\mathbf{u}_{\bullet}^{\mathsf{T}}\mathbf{v}_{\bullet}+\ln P_{0}(\bullet)+c\right)} = \frac{1}{1+\exp\left(-f(x)+\ln P_{0}(x)+c\right)}$$

$$= \frac{1}{1+\exp\left(-f(x)+\ln P_{0}(x)+c\right)}$$

^{*}Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models." In *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, edited by Yee Whye Teh and Mike Titterington, 9:297–304. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR.

Noise Contrastive Estimation (NCE)

Negative sampling*

$$P(Y = 1|x)$$

$$= \frac{1}{1 + \exp(-f(x) + \ln P_0(x) + c)}$$
asymptomatically unbiased for
$$\downarrow$$

$$P(x) = \frac{1}{Z} \exp(f(x))$$

$$P(Y = 1|x)$$

$$= \frac{1}{1 + \exp(-f(x) + \ln P_0(x) + c)}$$

$$= \frac{1}{1 + \exp[-(f(x) + \ln P_0(x)) + \ln P_0(x) + c]}$$

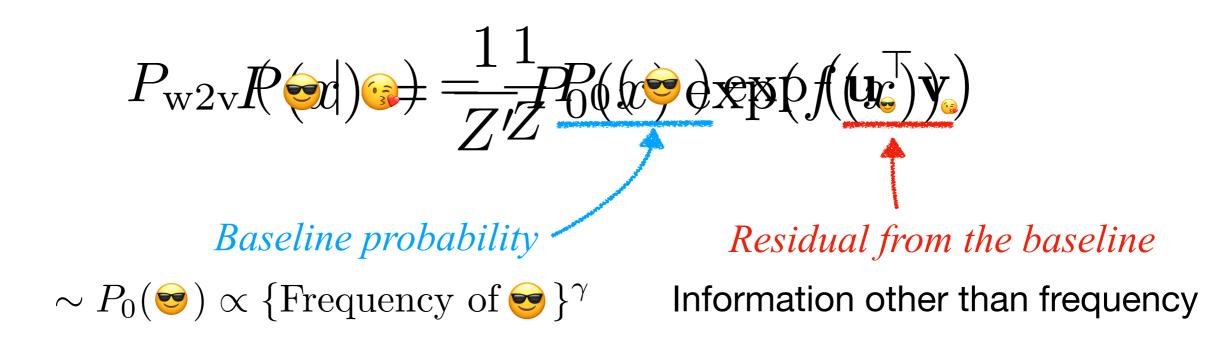
$$f'(x)$$

$$\text{asymptomatically unbiased for}$$

$$P(x) = \frac{1}{Z'} \exp(f'(x))$$

$$P(x) = \frac{1}{Z'} P_0(x) \exp(f(x))$$

word2vec trained with Skip-gram Negative sampling (SGNS) is asymptomatically unbiased for



Built-in debiasing feature for frequency bias!

$$P_{\text{w2v}}\left(\mathbf{e} \mid \mathbf{o}\right) = \frac{1}{Z} P_0(\mathbf{e}) \exp\left(\mathbf{u} \cdot \mathbf{v}\right)$$

$$\sim P_0(\Theta) \propto \{ \text{Frequency of } \Theta \}^{\gamma}$$

Sampling bias due to the friendship paradox*

$$\left\{ \begin{array}{c} \text{Frequency of } \\ \text{in the sentence} \end{array} \right\} \propto \left\{ \begin{array}{c} \text{\# neighbors of } \\ \text{in the graph} \end{array} \right\}$$

The friendship paradox has *no effect* thanks to *the built-in debiasing feature* of SGNS word2vec if $\gamma = 1$.

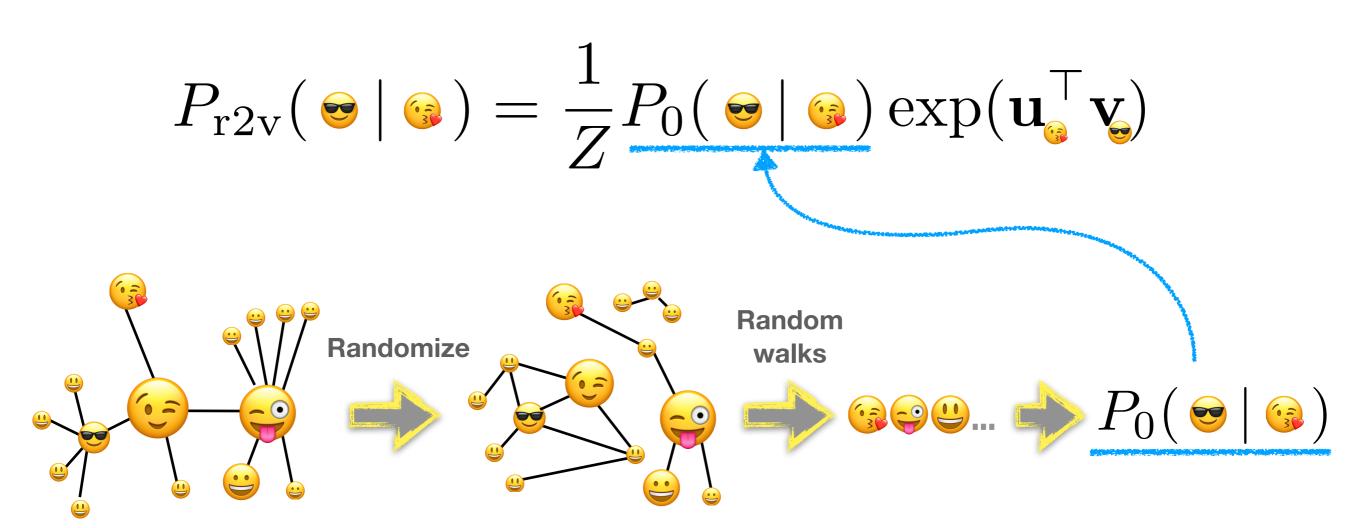
Residual2Vec

$$P_{\text{r2v}}(\mathbf{e} | \mathbf{e}) = \frac{1}{Z} P_0(\mathbf{e} | \mathbf{e}) \exp(\mathbf{u} \mathbf{v})$$

Model the baseline explicitly to control bias

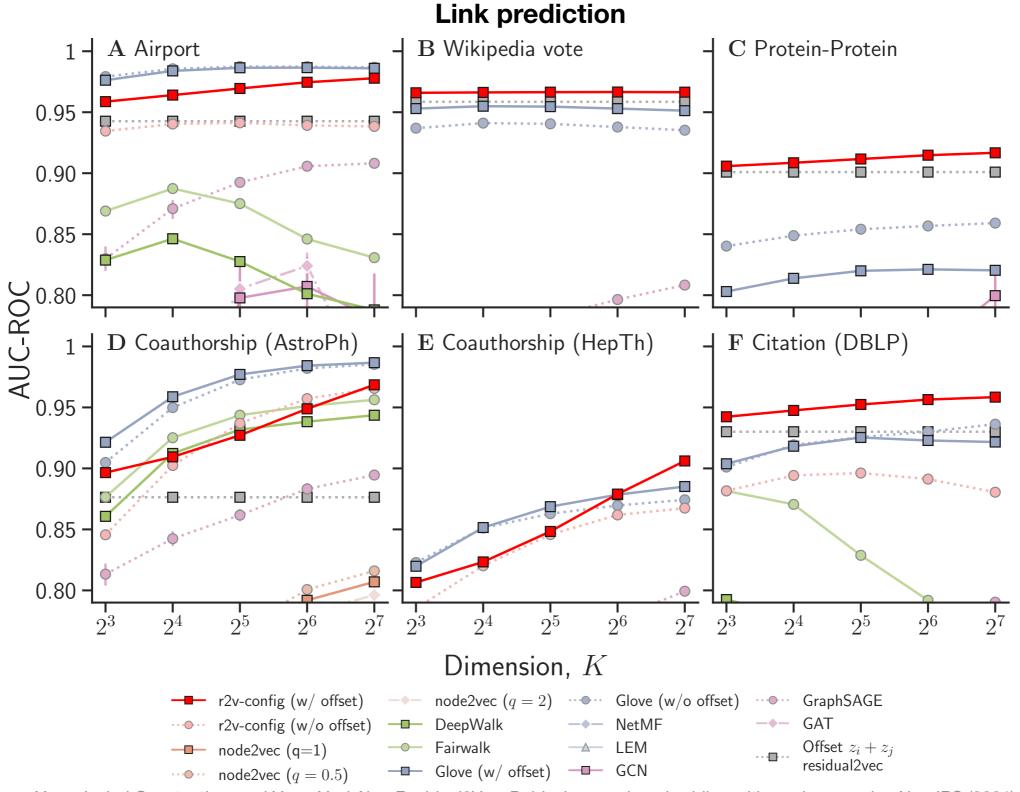
Residual2Vec

How can we model the baseline?

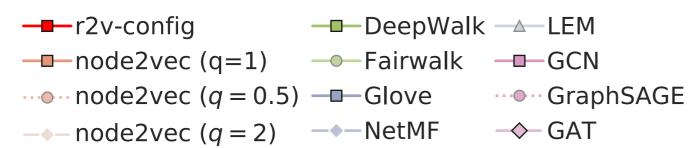


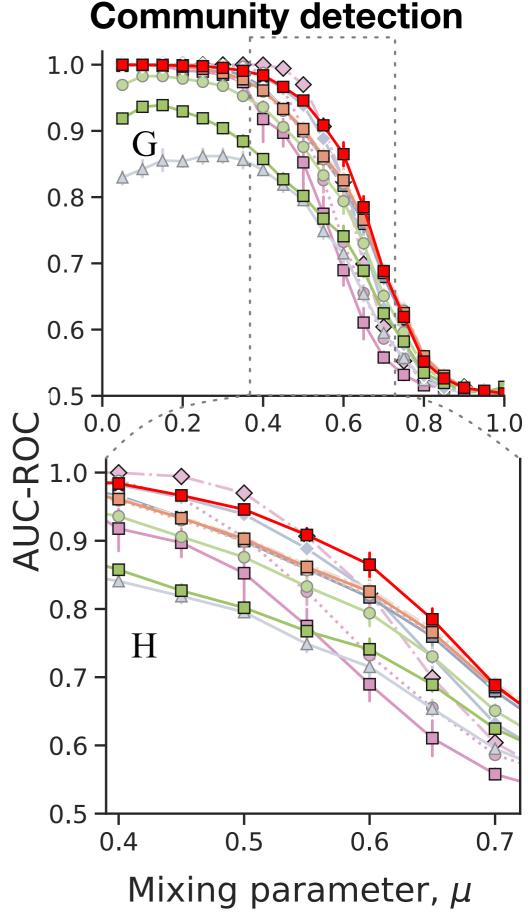
Can be done analytically without simulations!

Performed the best or nearly the best for all the six graphs of different domains

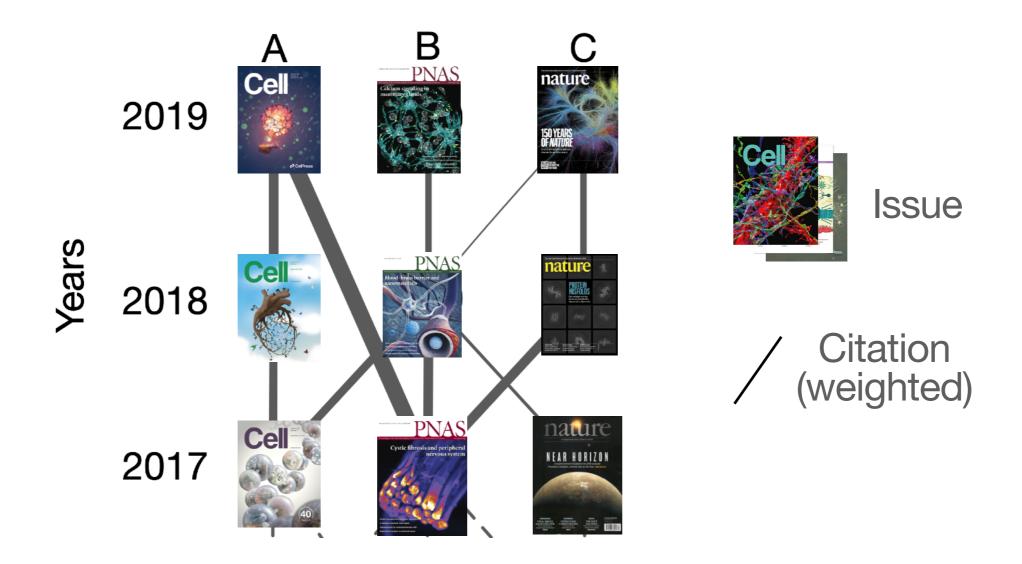


The best or the second best performer for a community detection benchmark





Case studies

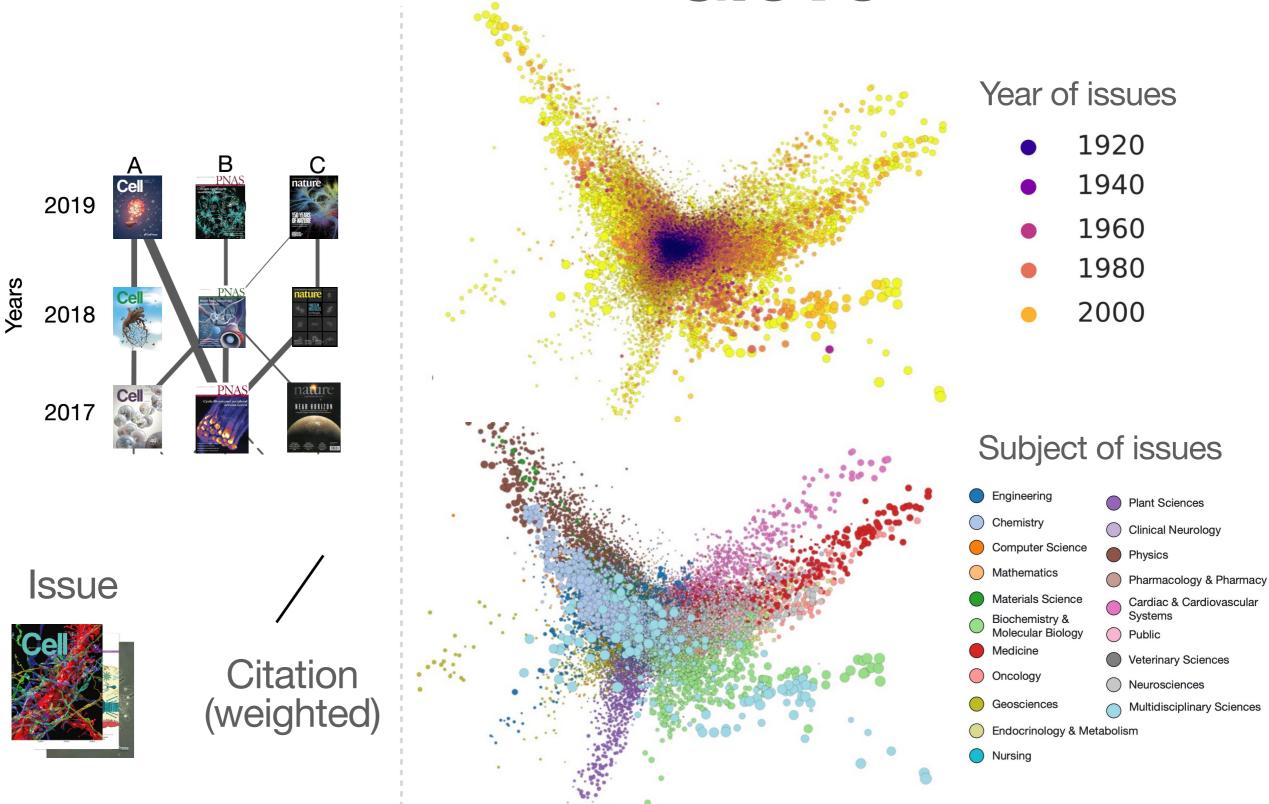


Citation graph of academic issues

Constructed using the Web of Science

240K issues and 250M citations

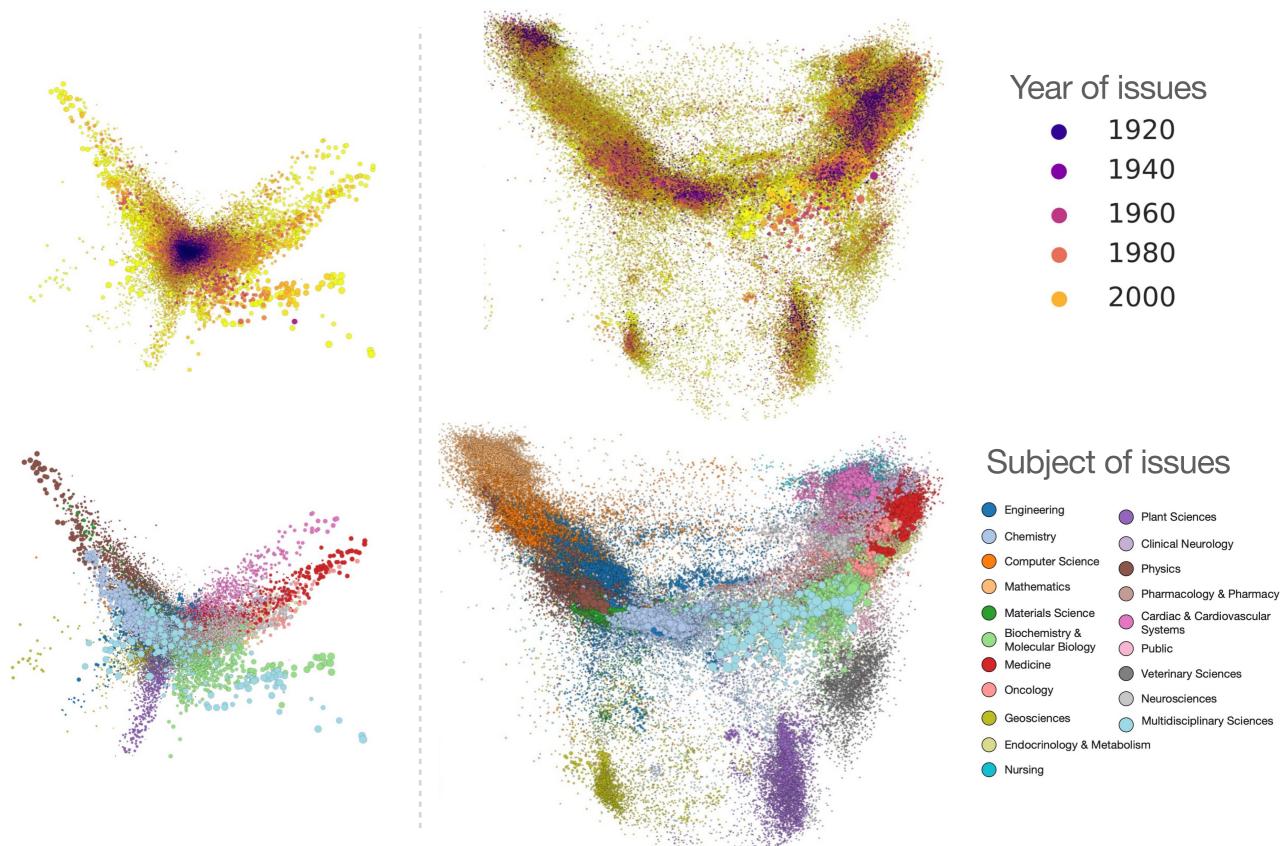
Glove*



^{*}Jeffrey Pennington, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*. 2014.

Residual2Vec

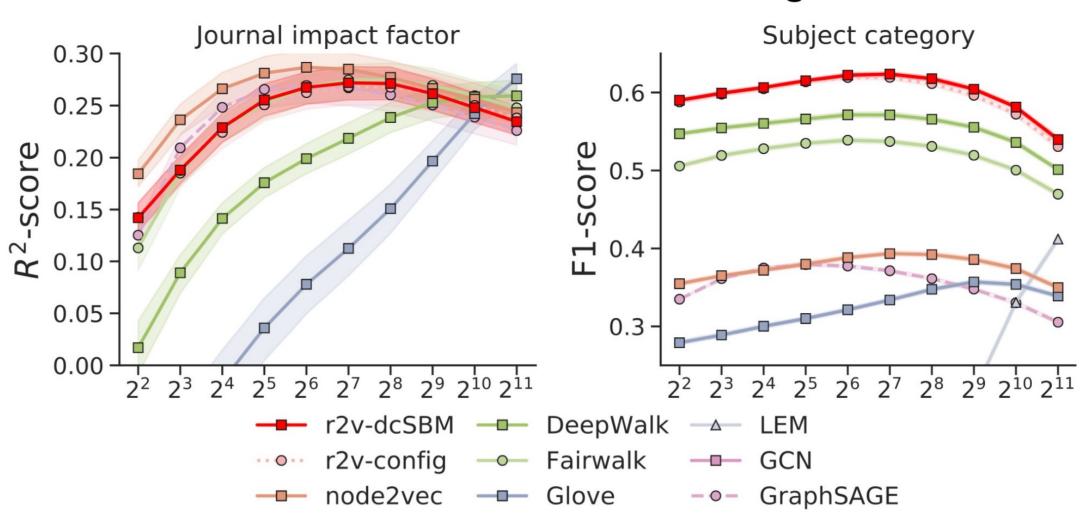
(temporal biases are debiased)



Glove

Predicted the impact factor and the subject of journals well

Prediction based on embedding

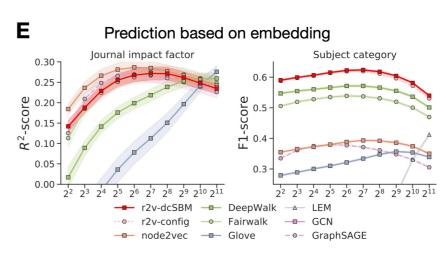


Summary

word2vec has a built-in debiasing feature attributed to negative sampling

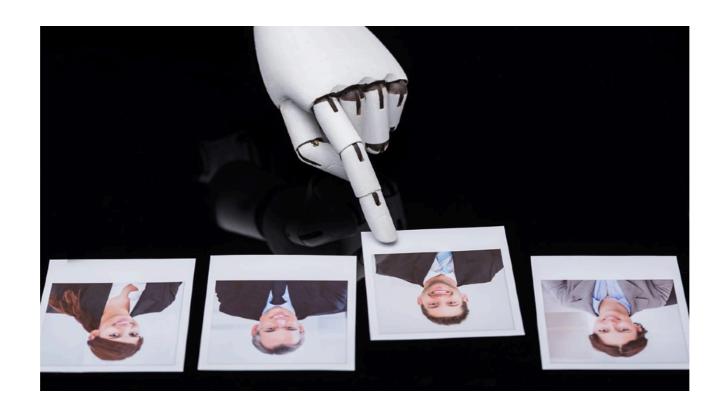
Inspired by this finding, propose *residual2vec* that can negate other types of structural biases

Good performance and enable more control on the biases in embedding.



Discussion

We demonstrated a new potential of negative sampling as a way to mitigate bias in representations



MIT Connection Science the technology of innovation

Residual2Vec: Debiasing graph embedding using random graphs



https://arxiv.org/abs/2110.07654

github.com/skojaku/residual2vec

skojaku@iu.edu

Sadamori Kojaku

Jisung Yoon

Isabel Constantino

Yong-Yeol Ahn