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Active learning

Automate data annotation:

e unlabelled data is readily available
e labels are expensive and tedious

e reduce the number of labels to learn a good classifier

Active learning is well-established
in theory: PAC inspired results

in practice: self-driving cars, speech recognition, drug discovery

Max Thiessen 5)



Active vertex classification

Given a graph G = (V,E)

e vertices V represent the data

o009
o 6o o 0 e
e edges E representing similarity N %
e fixed unknown labels {.,O} 00
Goal:

Learn labels using as few as possible iterative vertex queries
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Previous results: cut-based bounds

Query complexity: number of queries required to correctly identify the labelling
Cut-based bounds [Afshani, et al. 2007, Dasarathy, et al. 2015]
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e cut of the labelling C: set of edges going from one class to the other
e cut border OC: set of vertices incident to C
e query complexity:

O (|| log V)
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Previous results: cut-based bounds

Query complexity:
O (|0Cllog|V])

Restrictions:

e labels must be balanced

e bound is label dependent

size of the cut border JC can be large or even unknown
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Label-independent bounds

Our goal: label-independent bounds

only depend on G

do not depend on labels

practitioners get a cost estimate before the data annotation

e need assumptions on labels
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Geodesic convexity assumption
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Geodesic convexity assumption
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vertices have same label = vertices on connecting shortest path have the label
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Convexity in Euclidean space

Set is convex: contains all connecting line segments
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Geodesic convexity on graphs

Vertex set is convex: contains all connecting shortest paths
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Convex hull o(X) is the smallest convex vertex set containing X
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Convexity in real-world graphs

Cancer-related genes share similarity along shortest paths
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Convexity in real-world graphs

dataset convex communities
DBLP 4308/5000
Amazon 3999/5000
Youtube 2990/5000
LiveJournal 1649/5000
Orkut 363,/5000

Eu-core 7/42
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Halfspaces on graphs
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Vertex set C is a halfspace, if C and V' \ C are convex

Assumption: blue subgraph and red subgraph are halfspaces
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Upper bound on the query complexity

Query complexity:

O(h(G) + log d(G) + tw(G))
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Upper bound on the query complexity

Query complexity:

h(G) )
O(h(G) + log d(G) + tw(G))
d(G)
H hull set if o(H
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Upper bound on the query complexity

O(h(G) + log d(G) + tw(G))
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General lower bound

A vertex x is ,if V\ {v} is convex

e generalisation of leaves
e set of vertices

Query complexity is

Can be far away from
O(h(G) + log d(G) + tw(G))

Max Thiessen 19



Upper bound:
e O(h(G)+logd(G) + tw(G))

Lower bounds along separation axioms [van de Vel 1993]
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Radon partition Ry, R, of a set R:

e RRIUR =R RiNR =10
e o(Ri)No(Rx) #0

Radon number: Smallest number r such that any set of size r has a Radon partition
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Radon partition Ry, R, of a set R:

e RRIUR =R RiNR =10
e o(Ri)No(Rx) #0

Radon number: Smallest number r such that any set of size r has a Radon partition
VC dimension of halfspaces is < Radon(G) — 1

Remarks:

e R" has VC dimension n+ 1 and Radon number n + 2
e For Sy graphs the VC dimension is exactly Radon(G) — 1.
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Upper bound:

o O(h(G) + log d(G) +tw(G))

Lower bounds along separation axioms [van de Vel 1993]
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S1: any singleton v € V is convex

Q| )

S»: any pair of vertices v # w is halfspace separable
Q] | +log d(G))
S3: any convex set C and v € V' \ C are halfspace separable
Q(h(G) + log d(G))
S4: any two disjoint convex sets are halfspace separable
Q(h(G) + log d(G) + Radon(G))
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Experiments

Two moons dataset
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Conclusions and future directions

We characterised the query complexity of learning halfspaces in graphs

e tight bounds along separation axioms
e identified the Radon number as an important parameter

e more details in the paper (proofs, computational runtime, ...)
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Thanks for listening!

See you in the poster session
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