Skipping the Frame-Level: Event-Based Piano Transcription With Neural Semi-CRFs

Yujia Yan, Frank Cwitkowitz, Zhiyao Duan University of Rochester

In this work...

- We demonstrate a simple, fast, yet effective formulation for automatic piano transcription.
- The proposed paradigm may be beneficial to other areas that rely on frame-level estimates, e.g., DCASE (detection and classification of acoustic scenes and events).

Automatic Piano Transcription

Previous v.s. Proposed

- Previous neural network based approaches (e.g., Hawthorne et al. [2018], Kong et al. [2020], Kwon et al. [2020]):
 - Predict different stages of a note event, i.e., the onset, offset, and pitch activations, separately.
 - Combine disjoint predictions into events using post-processing (e.g., thresholding, peak picking, or hidden Markov model filtering).

- Key idea of the proposed approach
 - Formulate piano transcription as the direct prediction of note events in one-stage using semi-CRFs (conditional random fields)

Proposed Semi-CRF Approach

Target output: a set of events such as notes and pedals, represented as *<onset*, *offset*, *eventType>* tuples.

Events of a certain *eventType* (a specific note/pedal) are non-overlapping (onset/offset frame indices are allowed to overlap), e.g., [0,0], [2,4], [4,5].

Posterior probability of events is evaluated through two **score functions**, which are parameterized by neural networks. The model is trained end to end via **MLE**.

A set of events

$$\begin{split} p_{\theta}(\mathcal{Y}_{\textit{eventType}}|\mathcal{X}) &= \frac{1}{Z(\textit{eventType})} \exp \bigg[\sum_{(i,j,\textit{eventType}) \in \mathcal{Y}_{\textit{eventType}}} \textit{score}(i,j,\textit{eventType}) \\ &+ \sum_{[i-1,i] \; \text{not covered in} \; \mathcal{Y}_{\textit{eventType}}} \textit{score}_{\epsilon}(i-1,i,\textit{eventType}) \; \bigg], \end{split}$$

Training/Inference is quadratic in complexity. However, we show that it is still a fast solution for event-based prediction. See paper for details.

Scores how likely [i-1, i] is **not covered** by any event of *eventType*.

Scores how likely [i, j] is an

event of eventType

System Overview

Figure 1: Proposed system overview. For the middle part of the figure, T_{begin} and T_{end} are the number of beginning positions and ending positions, respectively, and N is the number of eventType(s).

Experiments: Transcription Performance

	Activation			Note Onset			Note w/ Offset			Note w/ Offset & Vel.		
Method	P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1
Hawthorne et al. [2019]	86.84	89.24	87.82	97.88	92.26	94.93	82.09	77.44	79.65	78.37	73.94	76.05
Kong et al. [2020]	90.09	90.42	90.15	98.16	95.46	96.77	85.65	83.32	84.45	84.18	81.92	83.02
Proposed	93.84	88.48	90.98	98.78	94.18	96.39	90.79	86.62	88.63	89.78	85.68	87.65

Table 1: Piano transcription note results for the proposed methods and various related works.

	l A	Activatio	n		Onset		Onset & Offset		
Method	P	R	F_1	P	R	F_1	P	R	F_1
Kong et al. [2020]	94.14	94.29	94.11	77.43	78.19	77.71	73.56	74.21	73.81
Proposed	95.13	87.71	90.73	82.14	74.91	78.10	78.48	71.72	74.71

Table 2: Sustain pedal detection results for the proposed methods and various related works.

See paper for additional results.

Experiments: Timing Precision of Matched Notes

(a) Onset time deviation distribution.

(b) Offset time deviation distribution.

Figure 3: Empirical cumulative distribution functions of time deviations of estimated onsets and offsets from ground-truth notes.

Experiments: Running time

With Intel(R) i7-7800X@3.5GHz and Nvidia 1080TI, on *Carl Czeny Grand Sonata Op.145 No.9*:

System	Running time				
Kong et al. [2020]	353s				
Proposed	95s				

Table 4: Running time for transcribing the same 33.3 minutes audio file.

Thank you!