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confirming that the model solves the selection problem at the ‘beha-
vioural’ level (Extended Data Fig. 2e–h).

We first analysed model population trajectories in the subspace
spanned by the axes of choice, motion and colour, and found that
they reproduce the four main features of the PFC population responses
discussed above (Fig. 5 and Extended Data Fig. 9a–g). First, integration
of evidence corresponds to gradual movement of the population res-
ponse along the choice axis. Second, momentary motion and colour
evidence ‘push’ the population away from the choice axis, resulting in
trajectories that are parametrically ordered along the motion and col-
our axes. Third, the direction of the axes of choice, motion and colour
are largely invariant with context, as are the strength of the motion and
colour inputs, as these are not gated before entering the network.
Fourth, the trajectories during motion and colour contexts are sepa-
rated along the axis of context (Extended Data Fig. 9f, g). Model and
physiological dynamics differ markedly in one respect—signals along
the input axes are transient in the physiology, but not in the model,
yielding PFC trajectories that curve back to the choice axis before the
end of the viewing interval (compare Figs 5a, f to 2a, f). This difference
suggests that the sensory inputs to PFC are attenuated after a decision is
reached. Additional differences between the model and the physio-
logical dynamics can be readily explained by previously proposed
imperfections in the evidence integration process, such as ‘urgency’
signals36,37 or instability in the integrator38 (Extended Data Fig. 10).

A novel mechanism of selective integration
We then ‘reverse engineered’ the model33 to discover its mechanism of
selective integration. The global features of the model activity are
easily explained by the overall arrangement of fixed points of the
dynamics33 (Fig. 5), which result from the synaptic connectivity
learned during training. Fixed points (small red crosses) correspond
to patterns of neuronal activations (that is, locations in state space)
that are stable when the sensory inputs are turned off. First, we found
that the model generates a multitude of fixed points, which are
approximately arranged to form two lines along the choice axis.
The two sets of fixed points are separated along the axis of context
(Extended Data Fig. 9f, g) and never exist together—one exists in the
motion context (Fig. 5a–c), the other in the colour context (Fig. 5d–f).

Second, the responses around each fixed point were approximately
stable only along a single dimension pointing towards the neighbour-
ing fixed points (red lines), whereas responses along any other dimen-
sion rapidly collapsed back to the fixed points. Therefore, each set of
fixed points approximates a line attractor39. Finally, two stable attrac-
tors (large red crosses), corresponding to the two possible choices,
delimit each line attractor.

The integration of the relevant evidence is thus implemented in the
model as movement along an approximate line attractor39. The model
population response, however, does not move strictly along the line
attractor. Like the physiological data, model trajectories move parallel
to the line attractors (the choice axis) at a distance proportional to the
average strength of the sensory inputs, reflecting the momentary
sensory evidence (Fig. 5a, c, d, f). After the inputs are turned off
(Fig. 5, purple data points), the responses rapidly relax back to the
line attractor.

To understand how the relevant input is selected for integration
along a line attractor, we analysed the local dynamics of model res-
ponses around the identified fixed points33 (Fig. 6). To simplify the
analysis, we studied how the model responds to brief pulses of motion
or colour inputs (Fig. 6a), rather than the noisy, temporally extended
inputs used above. Before a pulse, we initialized the state of the network
to one of the identified fixed points (Fig. 6a, red crosses). Locally around
a fixed point, the responses of the full, nonlinear model can then be
approximated by a linear dynamical system (see Supplementary Infor-
mation), the dynamics of which can be more easily understood33.

Both the motion and colour inputs (that is, the corresponding pulses)
have substantial projections onto the line attractor (Fig. 6a) but, cru-
cially, the size of these projections does not predict the extent to which
each input will be integrated. For instance, in both contexts the motion
pulses have similar projections onto the line attractor (Fig. 6a, left
panels), and yet they result in large movement along the attractor in
the motion context (top) but not in the colour context (bottom).

The selection of the inputs instead relies on context-dependent
relaxation of the network dynamics after the end of the pulse, which
reverses movement along the line attractor caused by the irrelevant
pulse (Fig. 6a, top right and bottom left) and enhances the effects of
the relevant pulse (Fig. 6a, top left and bottom right). These relaxation
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analysis. a–f, Dynamics of model population
responses, same conventions as in Fig. 2. Responses
are projected into the three-dimensional subspace
spanned by the axes of choice, motion and colour
(defined here based on the model synaptic weights,
see Supplementary Information, section 7.6).
Movement along the choice axis corresponds to
integration of evidence, and the motion and colour
inputs deflect the trajectories along the
corresponding input axes. Fixed points of the
dynamics (red crosses) were computed separately
for motion (a–c) and colour contexts (d–f) in the
absence of sensory inputs (see Supplementary
Information, section 7.5). The fixed points are
‘marginally stable’ (that is, one eigenvalue of the
linearized dynamics is close to zero, whereas all
others have strongly negative real parts; see
Supplementary Information). The locally
computed right zero-eigenvectors (red lines) point
to the neighbouring fixed points, which thus
approximate a line attractor in each context. After
the inputs are turned off (dots off, purple data
points and lines) the responses relax back towards
the line attractor. Each line attractor ends in two
‘stable’ attractors (that is, all eigenvalues have
strongly negative real parts, large crosses)
corresponding to model outputs of 11 and 21
(that is, choice 1 or 2).
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from each other (Fig. 3b–d), and can thus be validated or rejected by
our PFC recordings (Fig. 3a).

The first model (Fig. 3b) is based on two widely accepted hypo-
theses about the mechanisms underlying selection and integration
of evidence. First, it assumes that inputs are selected early3–8, such
that a given input drives PFC responses when relevant (grey arrow in
Fig. 3b, top), but is filtered out before reaching PFC when irrelevant
(no grey arrow in Fig. 3b, bottom). Second, it assumes that the relevant
input directly elicits a pattern of activation in PFC resembling the
pattern corresponding to a choice (the grey arrow in Fig. 3b, top,
points along the axis of choice), as would be expected by current
models of integration28,29.

Both hypotheses are difficult to reconcile with the recorded PFC
responses. Whereas the strength of each input is reduced when it is
irrelevant compared to when it is relevant, the magnitude of the
observed reduction seems too small to account for the behavioural
effects. For instance, irrelevant motion of high coherence (Fig. 2d,
black) elicits a larger deflection along the motion axis (relative to
baseline, purple dot, Fig. 2d) than relevant motion of intermediate
coherence (Fig. 2a, dark grey). Yet the former has almost no beha-
vioural effect (Fig. 1e), whereas the latter has a large behavioural effect
(Fig. 1c). The analogous observation holds for the colour input
(Figs 2c, f and 1d, f), strongly suggesting that the magnitude of the
momentary evidence alone does not determine whether the corres-
ponding input is integrated. Furthermore, the actual momentary
motion input is represented along a direction that has little overlap

with the choice axis, resulting in curved trajectories (Fig. 3a) that
differ markedly from the straight trajectories predicted by the early
selection model (Fig. 3b).

The observed PFC responses also rule out two additional models of
selection presented in Fig. 3. In the absence of early selection, a motion
input might be selected within PFC by modifying the angle between
the choice and motion axes (that is, the similarity between patterns of
neural activity representing choice and momentary motion evidence)
across contexts. This angle could be modified either by changing the
direction of the motion axis between contexts while keeping the choice
axis fixed (Fig. 3c), or vice versa (Fig. 3d). In both cases, the motion
input would elicit movement of the population along the axis of choice
in the motion context (top row), but not in the colour context (bottom
row), as the motion and choice axes have little or no overlap in the
colour context. At the single neuron level, variable axes that change
direction across contexts would be reflected as complex, nonlinear
interactions between context and the other task variables, which have
been proposed in some task-switching models30,31. However, our data
(Figs 2 and 3a) lend little support for variable choice (Fig. 3d) or input
(Fig. 3c) axes. More generally, the PFC data from monkey A rule out
any model of integration for which the degree of overlap between the
direction of the momentary evidence and the axis of choice determines
how much the corresponding input affects behaviour.

The representation of task variables in PFC of monkey F replicates
all but one key feature observed in monkey A. Most importantly,
population responses along the choice and motion axes (Extended
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Figure 2 | Dynamics of population responses in PFC. The average
population response for a given condition and time is represented as a point in
state space. Responses from correct trials only are shown from 100 ms after
dots onset (dots on, purple circle) to 100 ms after dots offset (dots off) in 50-ms
steps, and are projected into the three-dimensional subspace capturing the
variance due to the monkey’s choice (along the choice axis), and to the
direction and strength of the motion (motion axis) and colour (colour axis)
inputs. Units are arbitrary; components along the motion and colour axes are
enhanced relative to the choice axis (see scale bars in a, f). Conditions (see
colour bars) are defined based on context (motion context, top; colour context,
bottom), on the location of the chosen target (choice 1 versus choice 2) and
either on the direction and strength of the motion (grey colours) or the colour
input (blue colours). Here, choice 1 corresponds to the target in the response
field of the recorded neurons. The direction of the colour input does not refer to

the colour of the dots per se (red or green), but to whether the colour points
towards choice 1 or choice 2 (see Supplementary Information, section 6.4, for a
detailed description of the conditions). a, Effect of choice and the relevant
motion input in the motion context, projected onto the axes of choice and
motion. b, Same data as in a, but rotated by 90u around the axis of choice to
reveal the projection onto the axis of colour. c, Same trials as in b, but re-sorted
according to the direction and strength of the irrelevant colour input.
d–f, Responses in the colour context, analogous to a–c. Responses are averaged
to show the effects of the relevant colour (e, f) or the irrelevant motion input
(d). For relevant inputs (a, b and e, f), correct choices occur only when the
sensory stimulus points towards the chosen target (3 conditions per chosen
target); for irrelevant inputs (c, d), however, the stimulus can point either
towards or away from the chosen target on correct trials (6 conditions per
chosen target).
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regularized the input and output weights according to equation (4) and the squared firing rates of the
units (referred to as metabolic cost) according to equation (5). In sum, the training aims to minimize
a loss function, that consists of the error of the animal, the metabolic cost, and a penalty for large
network parameters.

RL2 =
1

NNin

N,NinX

i,j=1

(W in
ij )

2 +
1

NNout

Nout,NX

i,j=1

(W out
ij )2 (4)

RFR =
1

NTM

N,T,MX

i,t,m=1

ui(t,m)2 (5)

We find that the results are qualitatively insensitive to the initialization schemes used for the re-
current weight matrix W rec. For the results presented in this paper, simulations in the hexagonal
environment were obtained by initializing the elements of W rec to be zero mean Gaussian random
variables with variance 1.52/N , and simulations in the square and triangular environments were
initialized with an orthogonal W rec (Saxe et al., 2014). We initialized the bias b and output weights
W out to be zero. The elements of W in were zero mean Gaussian variables with variance 1/Nin.

grid-like
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border

irregular

a

b
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d

Figure 2: Different types of spatial selective responses of units in the trained RNN. Example sim-
ulation results for three different environments (square, triangular, hexagon) are presented. Blue
(yellow) represents low (high) activity. a) Grid-like responses. b) Band-like responses; c) Border-
related responses; d) Spatially irregular responses. These responses can be spatially selective but
they do not form a regular pattern defined in the conventional sense.

3 RESULTS

We run simulation experiments in arenas with different boundary shapes, including square, triangu-
lar and hexagonal. Figure 1c shows a typical example of the model performance after training; the
network (red trace) accurately tracks the animal’s actual path (black).

3.1 TUNING PROPERTIES OF THE MODEL NEURONS

We are mostly interested in what kind of representation the RNN has learned to solve this navigation
task, and whether such a representation resembles the response properties of neurons in EC (Moser
et al., 2008).

3.1.1 SPATIAL TUNING

To test whether the trained RNN developed location-selective representations, we plot individual
neurons’ mean activity level as a function of the animal’s location during spatial exploration. Note
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Figure 1: Experimental setup. a Schematic diagram of recurrent networks. The input neurons are Poisson
neurons providing noisy information about the stimulus or the stimuli. These neurons project onto the
recurrent neurons which are modeled as rectified linear units (ReLUs). Recurrent neurons, in turn, project
onto the output unit or units, which are either linear or sigmoidal in di↵erent tasks. b The five main
experimental tasks and the common trial structure. c Two factors determining the sequentiality index (SI):
the ridge-to-background ratio [16] measures the temporal localization of the activity of individual units; the
entropy of the peak time distribution measures the uniformity of the peak response times of the units in a
given trial. The SI for a given trial is then given by the sum of the mean log ridge-to-background ratio of
the recurrent units and the entropy of the peak time distribution. d Example idealized single-trial activity
patterns with the corresponding sequentiality indices (SI) indicated at the top of each panel. Di↵erent colors
represent the temporal activity patterns of a subset of individual units. These example trials were generated
with the same number of recurrent units and time steps as in the simulations in the rest of the paper. Hence,
the SI values here are directly comparable to the SI values reported elsewhere in the paper. A small amount
of noise, independent across neurons and time, was added to the responses of all neurons in order to break
possible ties in determining peak response times. e shows how the example trials shown in d score along
each of the two dimensions defining the SI. Dashed lines represent several iso-SI contours. All examples
except for the ramping one score close to maximum on the entropy dimension, hence their SIs are largely
distinguished by the mean ridge-to-background ratio. Note that the nearly persistent example was generated
by broadening the temporal activity profiles in the sequential example. It has thus the same peak time entropy
as the sequential example, but has a much smaller mean ridge-to-background ratio. The ramping example,
on the other hand, has minimal peak time entropy and a medium mean ridge-to-background ratio.
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throughout a delay period of up to 5 s1,20,24 (50 times the single-unit 
time constant) (Supplementary Fig. 2g).

Functional clusters encode subsets of tasks in reference networks. 
The focus of our analysis was to examine the neural representation 
of tasks. After training, it is conceivable that each unit of the recur-
rent network is only selective in one or a few tasks, forming highly 
specialized task representations. On the other hand, task represen-
tations may be completely mixed, where all units are engaged in 
every task (Fig. 1a). We sought to assess where our reference net-
works lie on the continuum between these two extreme scenarios. 
In this section, we will focus our analyses on one example network.

To quantify single-unit task representation, we need a measure of 
task selectivity that is general enough that it applies to a broad range 
of tasks, and at the same time simple enough that it can be easily 
computed. We propose a measure that we call task variance (see 
Methods). For each task and each unit, the task variance computes 
the variance of that unit’s noise-free response across conditions in 
that task (Fig. 2a). This measure quantifies the amount of stimulus 
information a unit conveyed during a task, without asking how that 

stimulus information is encoded. Units with different stimulus tun-
ing can have the same task variance in a task. Task variance is agnos-
tic about the task setup and can be easily computed in models and is 
also applicable to the analysis of experimental data.

By computing the task variance for all trained tasks, we were able 
to study how individual units are differentially selective in all of the 
tasks (Fig. 2b). For better comparison across units, we normalized the 
task variance of each unit such that the maximum normalized vari-
ance over all tasks was 1. By analyzing the patterns of normalized task 
variance for all active units, we found that units were self-organized 
into distinct clusters through learning (Fig. 2c,d and Supplementary 
Fig. 3a) (see Methods). We identified about 15 clusters in the net-
work. The ideal number of clusters was chosen to maximize the ratio 
of intercluster to intracluster distances (Supplementary Fig. 4). Units 
belonging to the same cluster are mainly selective in the same subset 
of tasks. Units in the same cluster can have different incoming and 
outgoing connection weights however, simply as a result of different 
stimulus tuning (Supplementary Fig. 5).

To understand the causal role of these clusters, we lesioned each 
of them while monitoring the change in performance across all  
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Fig. 2 | The emergence of functionally specialized clusters for task representation. a, Neural activity of a single unit during an example task. Different 
traces correspond to different stimulus conditions. b, Task variances across all tasks for the same unit. For each unit, task variance measures the variance 
of activities across all stimulus conditions. c, Task variances across all tasks and active units, normalized by the peak value across tasks for each unit. Units 
form distinct clusters identified using the k-means clustering method based on normalized task variances. Each cluster is specialized for a subset of tasks. 
A task can involve units from several clusters. Units are sorted by their cluster membership, indicated by colored lines at the bottom. d, Visualization of the 
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neighbor embedding (tSNE). Units are colored according to their cluster membership. e, Change in performance across all tasks when each cluster of  
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confirming that the model solves the selection problem at the ‘beha-
vioural’ level (Extended Data Fig. 2e–h).

We first analysed model population trajectories in the subspace
spanned by the axes of choice, motion and colour, and found that
they reproduce the four main features of the PFC population responses
discussed above (Fig. 5 and Extended Data Fig. 9a–g). First, integration
of evidence corresponds to gradual movement of the population res-
ponse along the choice axis. Second, momentary motion and colour
evidence ‘push’ the population away from the choice axis, resulting in
trajectories that are parametrically ordered along the motion and col-
our axes. Third, the direction of the axes of choice, motion and colour
are largely invariant with context, as are the strength of the motion and
colour inputs, as these are not gated before entering the network.
Fourth, the trajectories during motion and colour contexts are sepa-
rated along the axis of context (Extended Data Fig. 9f, g). Model and
physiological dynamics differ markedly in one respect—signals along
the input axes are transient in the physiology, but not in the model,
yielding PFC trajectories that curve back to the choice axis before the
end of the viewing interval (compare Figs 5a, f to 2a, f). This difference
suggests that the sensory inputs to PFC are attenuated after a decision is
reached. Additional differences between the model and the physio-
logical dynamics can be readily explained by previously proposed
imperfections in the evidence integration process, such as ‘urgency’
signals36,37 or instability in the integrator38 (Extended Data Fig. 10).

A novel mechanism of selective integration
We then ‘reverse engineered’ the model33 to discover its mechanism of
selective integration. The global features of the model activity are
easily explained by the overall arrangement of fixed points of the
dynamics33 (Fig. 5), which result from the synaptic connectivity
learned during training. Fixed points (small red crosses) correspond
to patterns of neuronal activations (that is, locations in state space)
that are stable when the sensory inputs are turned off. First, we found
that the model generates a multitude of fixed points, which are
approximately arranged to form two lines along the choice axis.
The two sets of fixed points are separated along the axis of context
(Extended Data Fig. 9f, g) and never exist together—one exists in the
motion context (Fig. 5a–c), the other in the colour context (Fig. 5d–f).

Second, the responses around each fixed point were approximately
stable only along a single dimension pointing towards the neighbour-
ing fixed points (red lines), whereas responses along any other dimen-
sion rapidly collapsed back to the fixed points. Therefore, each set of
fixed points approximates a line attractor39. Finally, two stable attrac-
tors (large red crosses), corresponding to the two possible choices,
delimit each line attractor.

The integration of the relevant evidence is thus implemented in the
model as movement along an approximate line attractor39. The model
population response, however, does not move strictly along the line
attractor. Like the physiological data, model trajectories move parallel
to the line attractors (the choice axis) at a distance proportional to the
average strength of the sensory inputs, reflecting the momentary
sensory evidence (Fig. 5a, c, d, f). After the inputs are turned off
(Fig. 5, purple data points), the responses rapidly relax back to the
line attractor.

To understand how the relevant input is selected for integration
along a line attractor, we analysed the local dynamics of model res-
ponses around the identified fixed points33 (Fig. 6). To simplify the
analysis, we studied how the model responds to brief pulses of motion
or colour inputs (Fig. 6a), rather than the noisy, temporally extended
inputs used above. Before a pulse, we initialized the state of the network
to one of the identified fixed points (Fig. 6a, red crosses). Locally around
a fixed point, the responses of the full, nonlinear model can then be
approximated by a linear dynamical system (see Supplementary Infor-
mation), the dynamics of which can be more easily understood33.

Both the motion and colour inputs (that is, the corresponding pulses)
have substantial projections onto the line attractor (Fig. 6a) but, cru-
cially, the size of these projections does not predict the extent to which
each input will be integrated. For instance, in both contexts the motion
pulses have similar projections onto the line attractor (Fig. 6a, left
panels), and yet they result in large movement along the attractor in
the motion context (top) but not in the colour context (bottom).

The selection of the inputs instead relies on context-dependent
relaxation of the network dynamics after the end of the pulse, which
reverses movement along the line attractor caused by the irrelevant
pulse (Fig. 6a, top right and bottom left) and enhances the effects of
the relevant pulse (Fig. 6a, top left and bottom right). These relaxation
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analysis. a–f, Dynamics of model population
responses, same conventions as in Fig. 2. Responses
are projected into the three-dimensional subspace
spanned by the axes of choice, motion and colour
(defined here based on the model synaptic weights,
see Supplementary Information, section 7.6).
Movement along the choice axis corresponds to
integration of evidence, and the motion and colour
inputs deflect the trajectories along the
corresponding input axes. Fixed points of the
dynamics (red crosses) were computed separately
for motion (a–c) and colour contexts (d–f) in the
absence of sensory inputs (see Supplementary
Information, section 7.5). The fixed points are
‘marginally stable’ (that is, one eigenvalue of the
linearized dynamics is close to zero, whereas all
others have strongly negative real parts; see
Supplementary Information). The locally
computed right zero-eigenvectors (red lines) point
to the neighbouring fixed points, which thus
approximate a line attractor in each context. After
the inputs are turned off (dots off, purple data
points and lines) the responses relax back towards
the line attractor. Each line attractor ends in two
‘stable’ attractors (that is, all eigenvalues have
strongly negative real parts, large crosses)
corresponding to model outputs of 11 and 21
(that is, choice 1 or 2).
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from each other (Fig. 3b–d), and can thus be validated or rejected by
our PFC recordings (Fig. 3a).

The first model (Fig. 3b) is based on two widely accepted hypo-
theses about the mechanisms underlying selection and integration
of evidence. First, it assumes that inputs are selected early3–8, such
that a given input drives PFC responses when relevant (grey arrow in
Fig. 3b, top), but is filtered out before reaching PFC when irrelevant
(no grey arrow in Fig. 3b, bottom). Second, it assumes that the relevant
input directly elicits a pattern of activation in PFC resembling the
pattern corresponding to a choice (the grey arrow in Fig. 3b, top,
points along the axis of choice), as would be expected by current
models of integration28,29.

Both hypotheses are difficult to reconcile with the recorded PFC
responses. Whereas the strength of each input is reduced when it is
irrelevant compared to when it is relevant, the magnitude of the
observed reduction seems too small to account for the behavioural
effects. For instance, irrelevant motion of high coherence (Fig. 2d,
black) elicits a larger deflection along the motion axis (relative to
baseline, purple dot, Fig. 2d) than relevant motion of intermediate
coherence (Fig. 2a, dark grey). Yet the former has almost no beha-
vioural effect (Fig. 1e), whereas the latter has a large behavioural effect
(Fig. 1c). The analogous observation holds for the colour input
(Figs 2c, f and 1d, f), strongly suggesting that the magnitude of the
momentary evidence alone does not determine whether the corres-
ponding input is integrated. Furthermore, the actual momentary
motion input is represented along a direction that has little overlap

with the choice axis, resulting in curved trajectories (Fig. 3a) that
differ markedly from the straight trajectories predicted by the early
selection model (Fig. 3b).

The observed PFC responses also rule out two additional models of
selection presented in Fig. 3. In the absence of early selection, a motion
input might be selected within PFC by modifying the angle between
the choice and motion axes (that is, the similarity between patterns of
neural activity representing choice and momentary motion evidence)
across contexts. This angle could be modified either by changing the
direction of the motion axis between contexts while keeping the choice
axis fixed (Fig. 3c), or vice versa (Fig. 3d). In both cases, the motion
input would elicit movement of the population along the axis of choice
in the motion context (top row), but not in the colour context (bottom
row), as the motion and choice axes have little or no overlap in the
colour context. At the single neuron level, variable axes that change
direction across contexts would be reflected as complex, nonlinear
interactions between context and the other task variables, which have
been proposed in some task-switching models30,31. However, our data
(Figs 2 and 3a) lend little support for variable choice (Fig. 3d) or input
(Fig. 3c) axes. More generally, the PFC data from monkey A rule out
any model of integration for which the degree of overlap between the
direction of the momentary evidence and the axis of choice determines
how much the corresponding input affects behaviour.

The representation of task variables in PFC of monkey F replicates
all but one key feature observed in monkey A. Most importantly,
population responses along the choice and motion axes (Extended
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Figure 2 | Dynamics of population responses in PFC. The average
population response for a given condition and time is represented as a point in
state space. Responses from correct trials only are shown from 100 ms after
dots onset (dots on, purple circle) to 100 ms after dots offset (dots off) in 50-ms
steps, and are projected into the three-dimensional subspace capturing the
variance due to the monkey’s choice (along the choice axis), and to the
direction and strength of the motion (motion axis) and colour (colour axis)
inputs. Units are arbitrary; components along the motion and colour axes are
enhanced relative to the choice axis (see scale bars in a, f). Conditions (see
colour bars) are defined based on context (motion context, top; colour context,
bottom), on the location of the chosen target (choice 1 versus choice 2) and
either on the direction and strength of the motion (grey colours) or the colour
input (blue colours). Here, choice 1 corresponds to the target in the response
field of the recorded neurons. The direction of the colour input does not refer to

the colour of the dots per se (red or green), but to whether the colour points
towards choice 1 or choice 2 (see Supplementary Information, section 6.4, for a
detailed description of the conditions). a, Effect of choice and the relevant
motion input in the motion context, projected onto the axes of choice and
motion. b, Same data as in a, but rotated by 90u around the axis of choice to
reveal the projection onto the axis of colour. c, Same trials as in b, but re-sorted
according to the direction and strength of the irrelevant colour input.
d–f, Responses in the colour context, analogous to a–c. Responses are averaged
to show the effects of the relevant colour (e, f) or the irrelevant motion input
(d). For relevant inputs (a, b and e, f), correct choices occur only when the
sensory stimulus points towards the chosen target (3 conditions per chosen
target); for irrelevant inputs (c, d), however, the stimulus can point either
towards or away from the chosen target on correct trials (6 conditions per
chosen target).
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regularized the input and output weights according to equation (4) and the squared firing rates of the
units (referred to as metabolic cost) according to equation (5). In sum, the training aims to minimize
a loss function, that consists of the error of the animal, the metabolic cost, and a penalty for large
network parameters.

RL2 =
1

NNin

N,NinX

i,j=1

(W in
ij )

2 +
1

NNout

Nout,NX

i,j=1

(W out
ij )2 (4)

RFR =
1

NTM

N,T,MX

i,t,m=1

ui(t,m)2 (5)

We find that the results are qualitatively insensitive to the initialization schemes used for the re-
current weight matrix W rec. For the results presented in this paper, simulations in the hexagonal
environment were obtained by initializing the elements of W rec to be zero mean Gaussian random
variables with variance 1.52/N , and simulations in the square and triangular environments were
initialized with an orthogonal W rec (Saxe et al., 2014). We initialized the bias b and output weights
W out to be zero. The elements of W in were zero mean Gaussian variables with variance 1/Nin.

grid-like

band-like

border

irregular

a

b

c

d

Figure 2: Different types of spatial selective responses of units in the trained RNN. Example sim-
ulation results for three different environments (square, triangular, hexagon) are presented. Blue
(yellow) represents low (high) activity. a) Grid-like responses. b) Band-like responses; c) Border-
related responses; d) Spatially irregular responses. These responses can be spatially selective but
they do not form a regular pattern defined in the conventional sense.

3 RESULTS

We run simulation experiments in arenas with different boundary shapes, including square, triangu-
lar and hexagonal. Figure 1c shows a typical example of the model performance after training; the
network (red trace) accurately tracks the animal’s actual path (black).

3.1 TUNING PROPERTIES OF THE MODEL NEURONS

We are mostly interested in what kind of representation the RNN has learned to solve this navigation
task, and whether such a representation resembles the response properties of neurons in EC (Moser
et al., 2008).

3.1.1 SPATIAL TUNING

To test whether the trained RNN developed location-selective representations, we plot individual
neurons’ mean activity level as a function of the animal’s location during spatial exploration. Note
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Figure 1: Experimental setup. a Schematic diagram of recurrent networks. The input neurons are Poisson
neurons providing noisy information about the stimulus or the stimuli. These neurons project onto the
recurrent neurons which are modeled as rectified linear units (ReLUs). Recurrent neurons, in turn, project
onto the output unit or units, which are either linear or sigmoidal in di↵erent tasks. b The five main
experimental tasks and the common trial structure. c Two factors determining the sequentiality index (SI):
the ridge-to-background ratio [16] measures the temporal localization of the activity of individual units; the
entropy of the peak time distribution measures the uniformity of the peak response times of the units in a
given trial. The SI for a given trial is then given by the sum of the mean log ridge-to-background ratio of
the recurrent units and the entropy of the peak time distribution. d Example idealized single-trial activity
patterns with the corresponding sequentiality indices (SI) indicated at the top of each panel. Di↵erent colors
represent the temporal activity patterns of a subset of individual units. These example trials were generated
with the same number of recurrent units and time steps as in the simulations in the rest of the paper. Hence,
the SI values here are directly comparable to the SI values reported elsewhere in the paper. A small amount
of noise, independent across neurons and time, was added to the responses of all neurons in order to break
possible ties in determining peak response times. e shows how the example trials shown in d score along
each of the two dimensions defining the SI. Dashed lines represent several iso-SI contours. All examples
except for the ramping one score close to maximum on the entropy dimension, hence their SIs are largely
distinguished by the mean ridge-to-background ratio. Note that the nearly persistent example was generated
by broadening the temporal activity profiles in the sequential example. It has thus the same peak time entropy
as the sequential example, but has a much smaller mean ridge-to-background ratio. The ramping example,
on the other hand, has minimal peak time entropy and a medium mean ridge-to-background ratio.
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throughout a delay period of up to 5 s1,20,24 (50 times the single-unit 
time constant) (Supplementary Fig. 2g).

Functional clusters encode subsets of tasks in reference networks. 
The focus of our analysis was to examine the neural representation 
of tasks. After training, it is conceivable that each unit of the recur-
rent network is only selective in one or a few tasks, forming highly 
specialized task representations. On the other hand, task represen-
tations may be completely mixed, where all units are engaged in 
every task (Fig. 1a). We sought to assess where our reference net-
works lie on the continuum between these two extreme scenarios. 
In this section, we will focus our analyses on one example network.

To quantify single-unit task representation, we need a measure of 
task selectivity that is general enough that it applies to a broad range 
of tasks, and at the same time simple enough that it can be easily 
computed. We propose a measure that we call task variance (see 
Methods). For each task and each unit, the task variance computes 
the variance of that unit’s noise-free response across conditions in 
that task (Fig. 2a). This measure quantifies the amount of stimulus 
information a unit conveyed during a task, without asking how that 

stimulus information is encoded. Units with different stimulus tun-
ing can have the same task variance in a task. Task variance is agnos-
tic about the task setup and can be easily computed in models and is 
also applicable to the analysis of experimental data.

By computing the task variance for all trained tasks, we were able 
to study how individual units are differentially selective in all of the 
tasks (Fig. 2b). For better comparison across units, we normalized the 
task variance of each unit such that the maximum normalized vari-
ance over all tasks was 1. By analyzing the patterns of normalized task 
variance for all active units, we found that units were self-organized 
into distinct clusters through learning (Fig. 2c,d and Supplementary 
Fig. 3a) (see Methods). We identified about 15 clusters in the net-
work. The ideal number of clusters was chosen to maximize the ratio 
of intercluster to intracluster distances (Supplementary Fig. 4). Units 
belonging to the same cluster are mainly selective in the same subset 
of tasks. Units in the same cluster can have different incoming and 
outgoing connection weights however, simply as a result of different 
stimulus tuning (Supplementary Fig. 5).

To understand the causal role of these clusters, we lesioned each 
of them while monitoring the change in performance across all  
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Fig. 2 | The emergence of functionally specialized clusters for task representation. a, Neural activity of a single unit during an example task. Different 
traces correspond to different stimulus conditions. b, Task variances across all tasks for the same unit. For each unit, task variance measures the variance 
of activities across all stimulus conditions. c, Task variances across all tasks and active units, normalized by the peak value across tasks for each unit. Units 
form distinct clusters identified using the k-means clustering method based on normalized task variances. Each cluster is specialized for a subset of tasks. 
A task can involve units from several clusters. Units are sorted by their cluster membership, indicated by colored lines at the bottom. d, Visualization of the 
task variance map. For each unit, task variances across tasks form a vector that is embedded in the two-dimensional space using t-distributed stochastic 
neighbor embedding (tSNE). Units are colored according to their cluster membership. e, Change in performance across all tasks when each cluster of  
units is lesioned.
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Artificial & biological neural networks
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…but are composed of drastically different elements!
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When trained to perform the same task, why should we 
expect artificial and biological networks to be similar, 

given the drastic differences in underlying mechanism?
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This work: an empirical approach
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