
TIME/ACCURACY TRADEOFFS FOR 
LEARNING A RELU 

WITH RESPECT TO GAUSSIAN MARGINALS

Surbhi Goel       Sushrut Karmalkar       Adam Klivans

The University of  Texas at Austin

 1



WHAT IS RELU REGRESSION?

 

                                

𝔼
𝒟 [(𝗋𝖾𝗅𝗎( ̂w ⋅ x) − y)2] ≤ 𝗈𝗉𝗍 + ϵ

Given: Samples drawn from distribution   with arbitrary labels𝒟𝒟
Output:   such that̂w ∈ ℝd

test error

 𝗈𝗉𝗍 := min
w ( 𝔼

𝒟 [(𝗋𝖾𝗅𝗎(w ⋅ x) − y)2])
loss of the best-fitting ReLU
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𝗋𝖾𝗅𝗎(a) = max(0, a)
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𝒟 [(𝗋𝖾𝗅𝗎( ̂w ⋅ x) − y)2] ≤ 𝗈𝗉𝗍 + ϵ

Given: Samples drawn from distribution   with arbitrary labels𝒟𝒟
Output:   such that̂w ∈ ℝd

test error

 𝗈𝗉𝗍 := min
w ( 𝔼

𝒟 [(𝗋𝖾𝗅𝗎(w ⋅ x) − y)2])
loss of the best-fitting ReLU

The underlying optimization problem is non-convex!
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𝗋𝖾𝗅𝗎(a) = max(0, a)



PRIOR WORK - POSITIVE

Mean-zero noise: Isotonic regression over Sphere [Kalai-Sastry’08, Kakade-
Kalai-Kanade-Shamir’11]

Noiseless: Gradient descent over Gaussian input [Soltanolkotabi’17]
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𝒟

Results require strong restrictions on the input or the label



PRIOR WORK - NEGATIVE

Minimizing training loss is NP-hard [Manurangsi-Reichman’18]

Hardness over uniform on the boolean cube [G-Kanade-K-Thaler’17]
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𝒟

Results use special discrete distributions to prove hardness



DISTRIBUTION ASSUMPTION

Assumption: For all  ,  (x, y) ∼ 𝒟 x ∼ 𝒩(0, Id) and y ∈ [0,1]
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DISTRIBUTION ASSUMPTION

Gaussian input allows for positive results in noiseless setting

[Tian’17, Soltanolkotabi’17, Li-Yuan'17, Zhong-Song-Jain-Bartlett-Dhillon'17, Brutzkus-
Globerson’17, Zhong-Song-Dhillon17, Du-Lee-Tian-Poczos-Singh’18, Zhang-Yu-Wang-

Gu’19, Fu-Chi-Liang’19…….] 
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DISTRIBUTION ASSUMPTION

Gaussian input allows for positive results in noiseless setting

[Tian’17, Soltanolkotabi’17, Li-Yuan'17, Zhong-Song-Jain-Bartlett-Dhillon'17, Brutzkus-
Globerson’17, Zhong-Song-Dhillon17, Du-Lee-Tian-Poczos-Singh’18, Zhang-Yu-Wang-

Gu’19, Fu-Chi-Liang’19…….] 

Assumption: For all  ,  (x, y) ∼ 𝒟 x ∼ 𝒩(0, Id) and y ∈ [0,1]

Explicitly compute closed-form expressions for loss/gradient
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HARDNESS RESULT

There exists NO algorithm for ReLU regression up to 
error   in time   under standard 

computational hardness assumptions.
ϵ do(log(1/ϵ))
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HARDNESS RESULT

There exists NO algorithm for ReLU regression up to 
error   in time   under standard 

computational hardness assumptions.
ϵ do(log(1/ϵ))

First hardness result under the Gaussian assumption!

The problem is as hard as learning sparse parities with noise!
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HARDNESS FOR GRADIENT DESCENT

Unconditionally, NO statistical query (SQ) algorithm with 
bounded norm queries can perform ReLU regression up 

to error   with less than   queries.ϵ do(log(1/ϵ))
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HARDNESS FOR GRADIENT DESCENT

Unconditionally, NO statistical query (SQ) algorithm with 
bounded norm queries can perform ReLU regression up 

to error   with less than   queries.ϵ do(log(1/ϵ))

Gradient Descent (GD) is well-known to be an SQ algorithm

GD can NOT solve ReLU regression in polynomial time

Recall GD works in noiseless setting [Soltanokotabi’17]
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APPROXIMATION RESULT

There exists an an algorithm for ReLU regression with 
error   in time  .O (𝗈𝗉𝗍2/3) + ϵ poly (d,1/ϵ)
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APPROXIMATION RESULT

There exists an an algorithm for ReLU regression with 
error   in time  .O (𝗈𝗉𝗍2/3) + ϵ poly (d,1/ϵ)

Finding approximate solutions is tractable!

Can get   in time   

[Diakonikolas-G-K-K-Soltanolkotabi’TBD]

O (𝗈𝗉𝗍) + ϵ poly (d,1/ϵ)
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