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WHAT IS RELU REGRESSION?

Given: Samples drawn from distribution & with arbitrary labels

Output: W € R? such that

- [(relu(?v\ + X) —y)z] <opt+e

D
test error
opt := min ( E [(relu(w c X) — y)2]>
w D
relu(a) = max(0, a) loss of the best-fitting ReLU
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test error

oot min ( E [ (relutw - ) - y)2])

w D

relu(a) = max(0, a) loss of the best-fitting ReLU

it  The underlying optimization problem is non-convex! ]
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Noiseless: Gradient descent over Gaussian Input [Softanolkotabi 1 7]

i Results require strong restrictions on the input or the label |
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PRIORWORK - NEGATIVE

Minimizing training loss 1s NP-hard [Manurangsi-Reichman’ 8]

Hardness over uniform on the boolean cube [G-Kanade-K-Thaler' 7]

| Results use special discrete distributions to prove hardness |
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DISTRIBUTION ASSUMPTION

Assumption: For all (x,y) ~ 9, x ~ N (0, 1)) and y € [0,1]

Gaussian input allows for positive results in noiseless setting

[ Tian'| /, Soltanolkotabi'| /7, Li-Yuan'l 7, Zhong-Song-Jain-Bartlett-Dhillon' | 7, Brutzkus-
Globerson’l 7, Zhong-Song-Dhillon | /7, Du-Lee-Tian-Poczos-Singh' | 8, Zhang-Yu-VVang-
Gu'l9, Fu-Chi-Liang'19....... ]

Explicitly compute closed-form expressions for loss/gradient |
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HARDNESS RESULT

There exists NO algorithm for ReLU regression up to

error ¢ in time d°(1°6(1/©) ynder standard
computational hardness assumptions.

The problem is as hard as learning sparse parities with noise!

i First hardness result under the Gaussian assumption!  }
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Unconditionally, NO statistical query (SQ) algorithm with
bounded norm queries can perform RelLU regression up

to error ¢ with less than (°(l0e(1/)) queries.

Gradient Descent (GD) is well-known to be an SQ algorithm

Recall GD works Iin noiseless setting [Soltanokotabi'l 7]
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APPROXIMATION RESULT

There exists an an algorithm for ReLU regression with
error O (opt2/3) + € in time poly (d,l/e).

Can get O (opt) + ¢ in time poly (d,l/e)

[Diakonikolas-G-K-K-Soltanolkotabi TBD]

Finding approximate solutions is tractable! "'
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