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Why multiple modalities?

Ubiquitous multi-modal data

= The related information among multiple modalities helps us to understand the data.



Supervised Learning under Multiple Modalities

= Supervision comes from and

= Modality pairing: a sample in modality A and another sample in modality B represent the
same instance.

= Manual annotations: expensive and laborious. When involving multiple modalities, the
labeling is even more complicated than that for single modal data.

= We turn to unsupervised learning under multiple modalities since it works without data
labels.



Mixed-modal Setting: Fully-unsupervised Learning

= Traditional unsupervised multi-modal learning still requires among
modalities for feature alignment.
= E.g., partial modality pairing, ‘must/cannot link’ constraints, co-occurrence frequency...

= . each instance is represented in only one modality.

Multi-modal data
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Figure 1: Examples of multi-modal and mixed-modal data with two modalities.
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Multi-modal data
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= Dataset D = {x;}?_; mixed from two modalities.
= D— {x,(-a)},'.’:‘?1 U {xj(-b)}j'.’il, where n = n, + np.
= aims at learning unified representations for the modalities and

then grouping the samples into k categories.



How to Learn Unified Representations?

Choice 1: learn a joint semantic space for all the modalities

= hard to find the correlation among all the modalities when pairing information is not available

Choice 2: learn the translation across the modalities

= easy to obtain the cross-modal mappings under the guidance of cycle-consistency

= modality unifying: transforming all the samples into a specific modality space



Framework: Overview
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Figure 2: Overview of the proposed method.

Modules
= Modality-specific auto-encoders: to learn latent representations for each modality.
= Cross-modal generators: to learn mappings across modalities with unpaired data.

= Discriminators: to distinguish whether a sample is mapped from other modality spaces.



Framework: Module |
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Modality-specific auto-encoders

Latent representations for each modality are learned by single-modal data reconstruction:
L2(®ag,) = 17 — Deca(Enca(x))|3.
LRe(®ag;) = 1% — Decs(Encs(x”))]5.



Framework: Module Il
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Cross-modal generators
Mappings across modalities are constrained by cycle-consistency:
‘ccAyc(eGAm OGBA) = EZaNXA [Hza - GBA(GAB(ZQ))Hl] )

(2)
L8,:(061s:O651) = Egyvs [1125 — Ga(Gra(2s)) 1]
Generators: produce fake samples that are transformed from other modalities rather than
originally lying in a specific modality space.



Framework: Module IlI
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Discriminators

Discriminators: distinguish whether a sample is mapped from other modality spaces.
Games between generators and discriminators:

L24,(065,00,) = Bz~ x,[Da(2)] — Ez,n xa[Da(Gaa(25))],
‘CEdv(GGAsv GDB) = EZbNXB[DB(zb)] - EZaNXA[DB(GAB(Za))]'



Framework: Objective Function
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See you at the poster session!

Wed Dec 11th 10:45AM — 12:45PM @ East Exhibition Hall B4+C #63

DM2C: Deep Mixed-Modal Clustering

Yangbangyan Jiang'?, Qiangian Xu?, Zhiyong Yang!2, Xiaochun Cao'25, Qingming Huang?345
) "Institute of Information Engineering, CAS 2University of Chinese Academy of Scit
X stitute of Computing Technology, CAS E

“BDKM, CAS Laboratory

B Motivation
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