DM2C: Deep Mixed-Modal Clustering

Yangbangyan Jiang, Qianqian Xu, **Zhiyong Yang**, Xiaochun Cao, Qingming Huang

Institute of Information Engineering, CAS University of Chinese Academy of Sciences Institute of Computing Technology, CAS Key Lab. of BDKM, CAS Peng Cheng Lab.

Why multiple modalities?

Ubiquitous multi-modal data

• The related information among multiple modalities helps us to understand the data.

1

Supervised Learning under Multiple Modalities

- Supervision comes from class labels and modality pairing.
 - Modality pairing: a sample in modality A and another sample in modality B represent the same instance.
- Manual annotations: expensive and laborious. When involving multiple modalities, the labeling is even more complicated than that for single modal data.
- We turn to unsupervised learning under multiple modalities since it works without data labels.

Mixed-modal Setting: Fully-unsupervised Learning

- Traditional unsupervised multi-modal learning still requires extra pairing information among modalities for feature alignment.
 - *E.g.*, partial modality pairing, 'must/cannot link' constraints, co-occurrence frequency...
- Mixed-modal data: each instance is represented in only one modality.

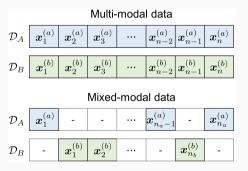
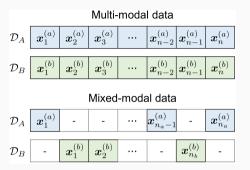


Figure 1: Examples of multi-modal and mixed-modal data with two modalities.

Mixed-modal Clustering: The Goal



- Dataset $\mathcal{D} = \{x_i\}_{i=1}^n$ mixed from two modalities.
- $\quad \blacksquare \quad \mathcal{D} \rightarrow \{\pmb{x}_i^{(a)}\}_{i=1}^{n_a} \cup \{\pmb{x}_j^{(b)}\}_{j=1}^{n_b}, \text{ where } n=n_a+n_b.$
- Mixed-modal clustering aims at learning unified representations for the modalities and then grouping the samples into k categories.

How to Learn Unified Representations?

Choice 1: learn a joint semantic space for all the modalities

hard to find the correlation among all the modalities when pairing information is not available

Choice 2: learn the translation across the modalities

- easy to obtain the cross-modal mappings under the guidance of *cycle-consistency*
- modality unifying: transforming all the samples into a specific modality space

Framework: Overview

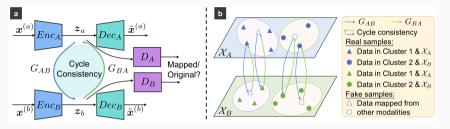
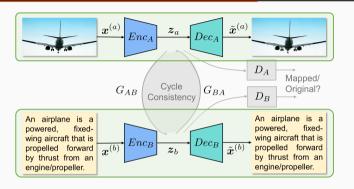


Figure 2: Overview of the proposed method.

Modules

- Modality-specific auto-encoders: to learn latent representations for each modality.
- Cross-modal generators: to learn mappings across modalities with unpaired data.
- Discriminators: to distinguish whether a sample is mapped from other modality spaces.

Framework: Module I

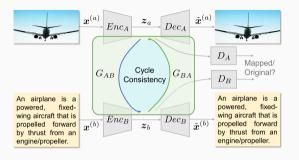


Modality-specific auto-encoders

Latent representations for each modality are learned by single-modal data reconstruction:

$$\mathcal{L}_{\text{rec}}^{A}(\Theta_{AE_{A}}) = \|\mathbf{x}_{i}^{(a)} - Dec_{A}(Enc_{A}(\mathbf{x}_{i}^{(a)}))\|_{2}^{2},
\mathcal{L}_{\text{rec}}^{B}(\Theta_{AE_{B}}) = \|\mathbf{x}_{i}^{(b)} - Dec_{B}(Enc_{B}(\mathbf{x}_{i}^{(b)}))\|_{2}^{2}.$$
(1)

Framework: Module II



Cross-modal generators

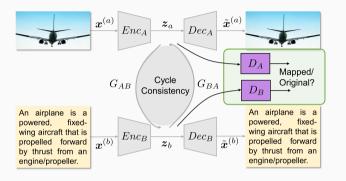
Mappings across modalities are constrained by cycle-consistency:

$$\mathcal{L}_{cyc}^{A}(\boldsymbol{\Theta}_{G_{AB}}, \boldsymbol{\Theta}_{G_{BA}}) = \mathbb{E}_{\boldsymbol{z}_{a} \sim \mathcal{X}_{A}} [\|\boldsymbol{z}_{a} - G_{BA}(G_{AB}(\boldsymbol{z}_{a}))\|_{1}],$$

$$\mathcal{L}_{cyc}^{B}(\boldsymbol{\Theta}_{G_{AB}}, \boldsymbol{\Theta}_{G_{BA}}) = \mathbb{E}_{\boldsymbol{z}_{b} \sim \mathcal{X}_{B}} [\|\boldsymbol{z}_{b} - G_{AB}(G_{BA}(\boldsymbol{z}_{b}))\|_{1}].$$
(2)

Generators: produce fake samples that are transformed from other modalities rather than originally lying in a specific modality space.

Framework: Module III



Discriminators

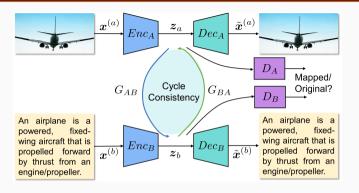
Discriminators: distinguish whether a sample is mapped from other modality spaces.

Games between generators and discriminators:

$$\mathcal{L}_{\text{adv}}^{\mathsf{A}}(\Theta_{G_{BA}}, \Theta_{D_{A}}) = \mathbb{E}_{\mathsf{z}_{a} \sim \mathcal{X}_{A}}[D_{\mathsf{A}}(\mathsf{z}_{a})] - \mathbb{E}_{\mathsf{z}_{b} \sim \mathcal{X}_{B}}[D_{\mathsf{A}}(G_{B\mathsf{A}}(\mathsf{z}_{b}))],$$

$$\mathcal{L}_{\text{adv}}^{\mathsf{B}}(\Theta_{G_{AB}}, \Theta_{D_{B}}) = \mathbb{E}_{\mathsf{z}_{b} \sim \mathcal{X}_{B}}[D_{\mathsf{B}}(\mathsf{z}_{b})] - \mathbb{E}_{\mathsf{z}_{a} \sim \mathcal{X}_{A}}[D_{\mathsf{B}}(G_{\mathsf{AB}}(\mathsf{z}_{a}))].$$
(3)

Framework: Objective Function



Objective Function
$$\min_{\substack{\Theta_{G_{AB}},\Theta_{G_{BA}}\\\Theta_{AE_{A}},\Theta_{AE_{B}}}} \Theta_{D_{A}}^{\max} \mathcal{L}_{adv}^{A} + \mathcal{L}_{adv}^{B} + \lambda_{1}(\mathcal{L}_{cyc}^{A} + \mathcal{L}_{cyc}^{B}) + \lambda_{2}(\mathcal{L}_{rec}^{A} + \mathcal{L}_{rec}^{B}) \tag{4}$$

Thank You for Your Attention!

See you at the poster session!

Wed Dec 11th 10:45AM – 12:45PM @ East Exhibition Hall B+C #63

