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Why multiple modalities?

Ubiquitous multi-modal data

• The related information among multiple modalities helps us to understand the data.
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Supervised Learning under Multiple Modalities

• Supervision comes from class labels and modality pairing.
• Modality pairing: a sample in modality A and another sample in modality B represent the

same instance.

• Manual annotations: expensive and laborious. When involving multiple modalities, the
labeling is even more complicated than that for single modal data.

• We turn to unsupervised learning under multiple modalities since it works without data
labels.
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Mixed-modal Setting: Fully-unsupervised Learning

• Traditional unsupervised multi-modal learning still requires extra pairing information among
modalities for feature alignment.

• E.g., partial modality pairing, ‘must/cannot link’ constraints, co-occurrence frequency...

• Mixed-modal data: each instance is represented in only one modality.

Figure 1: Examples of multi-modal and mixed-modal data with two modalities.
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Mixed-modal Clustering: The Goal

• Dataset D = {xi}n
i=1 mixed from two modalities.

• D → {x(a)i }na
i=1 ∪ {x(b)j }nb

j=1, where n = na + nb.

• Mixed-modal clustering aims at learning unified representations for the modalities and
then grouping the samples into k categories.
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How to Learn Unified Representations?

Choice 1: learn a joint semantic space for all the modalities
• hard to find the correlation among all the modalities when pairing information is not available

Choice 2: learn the translation across the modalities
• easy to obtain the cross-modal mappings under the guidance of cycle-consistency
• modality unifying: transforming all the samples into a specific modality space
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Framework: Overview

Figure 2: Overview of the proposed method.

Modules
• Modality-specific auto-encoders: to learn latent representations for each modality.
• Cross-modal generators: to learn mappings across modalities with unpaired data.
• Discriminators: to distinguish whether a sample is mapped from other modality spaces.
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Framework: Module I

Modality-specific auto-encoders
Latent representations for each modality are learned by single-modal data reconstruction:

LA
rec(ΘAEA) = ∥x(a)i − DecA(EncA(x(a)i ))∥2

2,

LB
rec(ΘAEB) = ∥x(b)i − DecB(EncB(x(b)i ))∥2

2.
(1)
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Framework: Module II

Cross-modal generators
Mappings across modalities are constrained by cycle-consistency:

LA
cyc(ΘGAB ,ΘGBA) = Eza∼XA [∥za − GBA(GAB(za))∥1] ,

LB
cyc(ΘGAB ,ΘGBA) = Ezb∼XB [∥zb − GAB(GBA(zb))∥1] .

(2)

Generators: produce fake samples that are transformed from other modalities rather than
originally lying in a specific modality space.
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Framework: Module III

Discriminators
Discriminators: distinguish whether a sample is mapped from other modality spaces.
Games between generators and discriminators:

LA
adv(ΘGBA ,ΘDA) = Eza∼XA [DA(za)]− Ezb∼XB [DA(GBA(zb))],

LB
adv(ΘGAB ,ΘDB) = Ezb∼XB [DB(zb)]− Eza∼XA [DB(GAB(za))].

(3)
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Framework: Objective Function

Objective Function

min
ΘGAB ,ΘGBA
ΘAEA ,ΘAEB

max
ΘDA ,ΘDB

LA
adv + LB

adv + λ1(LA
cyc + LB

cyc) + λ2(LA
rec + LB

rec) (4)
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Thank You for Your Attention!

See you at the poster session!

Wed Dec 11th 10:45AM – 12:45PM @ East Exhibition Hall B+C #63
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