Compression with Flows via Local Bits-Back Coding

Jonathan Ho, Evan Lohn, Pieter Abbeel

Background

Lossless compression with likelihood-based generative model p(x)

Information theory: a uniquely decodable code exists with lengths

$$\approx -\log p(x)$$

- Training (maximum likelihood) optimizes expected codelength
- But what about computational efficiency of coding?

Existing compression algorithms

- Naive algorithm requires enumerating all data. Needs exponential resources in data dimension
- Must harness structure of p(x) to code efficiently
 - Autoregressive model: code one dimension at a time
 - Latent variable models trained with variational inference: bits-back coding

Flow models

- Flow model: smooth invertible map between noise and data
- They are likelihood-based, so coding algorithm must exist
- This work: computationally efficient coding for flows

 $\mathbf{z} \sim \mathcal{N}(0, I)$

Local approximations of flows

- Strategy for coding: locally approximate the flow as a VAE, then apply bits-back coding
- Flow model maps data to latent: z = f(x)
- Construct a VAE where f is q(z|x) and f-1 is p(x|z)

The VAE bound will closely match the flow's log likelihood

Local bits-back coding

- Our algorithm is bits-back coding on this VAE approximation of the flow
- Straightforward implementation needs cubic time in data dimension. No assumptions on flow structure.
- Better than exponential, but not fast enough

Specializing local bits-back coding

- Making extra assumptions on the flow lets us speed up compression
- For RealNVP family: linear time, fully parallelizable compression by exploiting structure of coupling layers and composition

Results

Implemented for Flow++, a RealNVP-type flow model

Compression algorithm	CIFAR10	ImageNet 32x32	ImageNet 64x64
Theoretical	3.116	3.871	3.701
Local bits-back (ours)	3.118	3.875	3.703

- State of the art fully parallelizable compression on these datasets
 - Requires "auxiliary bits" for bits-back coding
 - Codelength can degrade if auxiliary bits are unavailable

Results: speed

 Specializing local bits-back to the RealNVP structure speeds up compression by orders of magnitude

Algorithm	Batch size	CIFAR10	ImageNet 32x32	ImageNet 64x64
Black box (Algorithm 1)	1	64.37 ± 1.05	534.74 ± 5.91	1349.65 ± 2.30
Compositional (Section 3.4.3)	1 64	0.77 ± 0.01 0.09 ± 0.00	0.93 ± 0.02 0.17 ± 0.00	0.69 ± 0.02 0.18 ± 0.00
Neural net only, without coding	1 64	0.50 ± 0.03 0.04 ± 0.00	0.76 ± 0.00 0.13 ± 0.00	0.44 ± 0.00 0.05 ± 0.00

Conclusion

- Local bits-back coding: compression with flow models
 - Naive algorithm: exponential time in data dimension
 - Our algorithm for general flows: polynomial time
 - Our algorithm for RealNVP family: linear time and parallelizable
- For algorithm details and comparisons to other types of models, come to our poster!
- Open source: github.com/hojonathanho/localbitsback