
Compression with Flows via
Local Bits-Back Coding

Jonathan Ho, Evan Lohn, Pieter Abbeel

Background
• Lossless compression with likelihood-based generative model p(x)

• Information theory: a uniquely decodable code exists with lengths

• Training (maximum likelihood) optimizes expected codelength

• But what about computational efficiency of coding?

≈ − log p(x)

01000101100100110
11101010000101011

encode decode

Existing compression
algorithms

• Naive algorithm requires enumerating all data. Needs
exponential resources in data dimension

• Must harness structure of p(x) to code efficiently

• Autoregressive model: code one dimension at a time

• Latent variable models trained with variational
inference: bits-back coding

Flow models

• Flow model: smooth invertible
map between noise and data

• They are likelihood-based, so
coding algorithm must exist

• This work: computationally
efficient coding for flows

z ⇠ N (0, I)
<latexit sha1_base64="3cAYUCWdTOTUmFFKx3vHhcEIG6Y=">AAACMnicbVDLSgMxFM3UVx1foy7dBEulBS0zIuhGKLqxG6lgH9CpJZNm2tDMgyQj1mG+yY1fIrjQhSJu/QgzbUWtHggczjmX3HuckFEhTfNJy8zMzs0vZBf1peWV1TVjfaMugohjUsMBC3jTQYIw6pOapJKRZsgJ8hxGGs7gNPUb14QLGviXchiStod6PnUpRlJJHaNie0j2HTe+TeCOLagHRwJGLD5PCuYurBShbev5r9iNih1D9yres5LC92wRwo6RM0vmCPAvsSYkByaodowHuxvgyCO+xAwJ0bLMULZjxCXFjCS6HQkSIjxAPdJS1EceEe14dHIC80rpQjfg6vkSjtSfEzHyhBh6jkqmS4ppLxX/81qRdI/aMfXDSBIfjz9yIwZlANP+YJdygiUbKoIwp2pXiPuIIyxVy7oqwZo++S+p75css2RdHOTKJ5M6smALbIMCsMAhKIMzUAU1gMEdeAQv4FW71561N+19HM1ok5lN8Avaxyci26g1</latexit><latexit sha1_base64="3cAYUCWdTOTUmFFKx3vHhcEIG6Y=">AAACMnicbVDLSgMxFM3UVx1foy7dBEulBS0zIuhGKLqxG6lgH9CpJZNm2tDMgyQj1mG+yY1fIrjQhSJu/QgzbUWtHggczjmX3HuckFEhTfNJy8zMzs0vZBf1peWV1TVjfaMugohjUsMBC3jTQYIw6pOapJKRZsgJ8hxGGs7gNPUb14QLGviXchiStod6PnUpRlJJHaNie0j2HTe+TeCOLagHRwJGLD5PCuYurBShbev5r9iNih1D9yres5LC92wRwo6RM0vmCPAvsSYkByaodowHuxvgyCO+xAwJ0bLMULZjxCXFjCS6HQkSIjxAPdJS1EceEe14dHIC80rpQjfg6vkSjtSfEzHyhBh6jkqmS4ppLxX/81qRdI/aMfXDSBIfjz9yIwZlANP+YJdygiUbKoIwp2pXiPuIIyxVy7oqwZo++S+p75css2RdHOTKJ5M6smALbIMCsMAhKIMzUAU1gMEdeAQv4FW71561N+19HM1ok5lN8Avaxyci26g1</latexit><latexit sha1_base64="3cAYUCWdTOTUmFFKx3vHhcEIG6Y=">AAACMnicbVDLSgMxFM3UVx1foy7dBEulBS0zIuhGKLqxG6lgH9CpJZNm2tDMgyQj1mG+yY1fIrjQhSJu/QgzbUWtHggczjmX3HuckFEhTfNJy8zMzs0vZBf1peWV1TVjfaMugohjUsMBC3jTQYIw6pOapJKRZsgJ8hxGGs7gNPUb14QLGviXchiStod6PnUpRlJJHaNie0j2HTe+TeCOLagHRwJGLD5PCuYurBShbev5r9iNih1D9yres5LC92wRwo6RM0vmCPAvsSYkByaodowHuxvgyCO+xAwJ0bLMULZjxCXFjCS6HQkSIjxAPdJS1EceEe14dHIC80rpQjfg6vkSjtSfEzHyhBh6jkqmS4ppLxX/81qRdI/aMfXDSBIfjz9yIwZlANP+YJdygiUbKoIwp2pXiPuIIyxVy7oqwZo++S+p75css2RdHOTKJ5M6smALbIMCsMAhKIMzUAU1gMEdeAQv4FW71561N+19HM1ok5lN8Avaxyci26g1</latexit><latexit sha1_base64="3cAYUCWdTOTUmFFKx3vHhcEIG6Y=">AAACMnicbVDLSgMxFM3UVx1foy7dBEulBS0zIuhGKLqxG6lgH9CpJZNm2tDMgyQj1mG+yY1fIrjQhSJu/QgzbUWtHggczjmX3HuckFEhTfNJy8zMzs0vZBf1peWV1TVjfaMugohjUsMBC3jTQYIw6pOapJKRZsgJ8hxGGs7gNPUb14QLGviXchiStod6PnUpRlJJHaNie0j2HTe+TeCOLagHRwJGLD5PCuYurBShbev5r9iNih1D9yres5LC92wRwo6RM0vmCPAvsSYkByaodowHuxvgyCO+xAwJ0bLMULZjxCXFjCS6HQkSIjxAPdJS1EceEe14dHIC80rpQjfg6vkSjtSfEzHyhBh6jkqmS4ppLxX/81qRdI/aMfXDSBIfjz9yIwZlANP+YJdygiUbKoIwp2pXiPuIIyxVy7oqwZo++S+p75css2RdHOTKJ5M6smALbIMCsMAhKIMzUAU1gMEdeAQv4FW71561N+19HM1ok5lN8Avaxyci26g1</latexit>

Local approximations of
flows

• Strategy for coding: locally approximate the flow as a
VAE, then apply bits-back coding

• Flow model maps data to latent: z = f(x)

• Construct a VAE where f is q(z|x) and f-1 is p(x|z)

• The VAE bound will closely match the flow’s log likelihood
xz

f

Local bits-back coding

• Our algorithm is bits-back coding on this VAE
approximation of the flow

• Straightforward implementation needs cubic time in data
dimension. No assumptions on flow structure.

• Better than exponential, but not fast enough

Specializing local bits-back
coding

• Making extra assumptions on the flow lets us speed up
compression

• For RealNVP family: linear time, fully parallelizable
compression by exploiting structure of coupling layers
and composition

Results
• Implemented for Flow++, a RealNVP-type flow model

• State of the art fully parallelizable compression on these datasets

• Requires “auxiliary bits” for bits-back coding

• Codelength can degrade if auxiliary bits are unavailable

4 Experiments

We designed experiments to investigate the following: (1) how well local bits-back codelengths
match the theoretical codelengths of modern flow models on high-dimensional data, (2) the effects of
the precision and noise parameters � and � on codelengths (Section 3.3), and (3) the computational
efficiency of local bits-back coding for use in practice. We focused on Flow++ [19], a recently
proposed RealNVP-type flow with a flow-based dequantizer. We used all concepts presented in this
paper: Algorithm 1 for elementwise and convolution flows [23], Algorithm 2 for coupling layers, the
compositional method of Section 3.4.3, and Algorithm 3 for dequantization. We used asymmetric
numeral systems (ANS) [12], following the BB-ANS [42] and Bit-Swap [26] algorithms for VAEs
(though the ideas behind our algorithms do not depend on ANS). We expect our implementation to
easily extend to other models, like flows for video [28] and audio [35], though we leave that for future
work. We provide open-source code at https://github.com/hojonathanho/localbitsback.

Codelengths Table 1 lists the local bits-back codelengths on the test sets of CIFAR10, 32x32
ImageNet, and 64x64 ImageNet. The listed theoretical codelengths are the average negative log
likelihoods of our model reimplementations, without importance sampling for the variational dequan-
tization bound, and we find that our coding algorithm attains very similar lengths. To the best of
our knowledge, these results are state-of-the-art for lossless compression with fully parallelizable
compression and decompression when auxiliary bits are available for bits-back coding.

Table 1: Local bits-back codelengths (in bits per dimension)

Compression algorithm CIFAR10 ImageNet 32x32 ImageNet 64x64

Theoretical 3.116 3.871 3.701
Local bits-back (ours) 3.118 3.875 3.703

Effects of precision and noise Recall from Section 3.3 that the noise level � should be small to
attain accurate codelengths. This means that the discretization volumes �x and �z should be small
as well to make discretization effects negligible, at the expense of a larger requirement of auxiliary
bits, which are not counted into bits-back codelengths [18]. Above, we fixed �x = �z = 2�32

and � = 2�14, but here, we study the impact of varying � = �x = �z and �: on each dataset, we
compressed 20 random datapoints in sequence, then calculated the local bits-back codelength and the
auxiliary bits requirement; we did this for 5 random seeds and averaged the results. See Fig. 1 for
CIFAR results, and see Appendix C for results on all models with standard deviation bars.

We indeed find that as � and � decrease, the codelength becomes more accurate, and we find a
sharp transition in performance when � is too large relative to �, indicating that coarse discretization
destroys noise with small scale. Also, as expected, we find that the auxiliary bits requirement grows
as � shrinks. If auxiliary bits are not available, they must be counted into the codelength for the
first datapoint, which can make our method impractical when coding few datapoints or when no
pre-transmitted random bits are present [42, 26]. The cost can be made negligible by coding long
sequences, such as entire test sets or audio or video with large numbers of frames [35, 28].

Figure 1: Effects of precision and noise parameters � and � on coding a random subset of CIFAR10

Computational efficiency We used OpenMP-based CPU code for compression with parallel ANS
streams [14], with neural net operations running on a GPU. See Table 2 for encoding timings
(decoding timings in Appendix C are nearly identical), averaged over 5 runs, on 16 CPU cores and 1
Titan X GPU. We computed total CPU and GPU time for the black box algorithm (Algorithm 1) and
the compositional algorithm (Section 3.4.3) on single datapoints, and we also timed the latter with
batches of datapoints, made possible by its low memory requirements (this was not possible with the

7

Results: speedTitan X GPU. We computed total CPU and GPU time for the black box algorithm (Algorithm 1) and
the compositional algorithm (Section 3.4.3) on single datapoints, and we also timed the latter with
batches of datapoints, made possible by its low memory requirements (this was not possible with the
black box algorithm, which already needs batching to compute the Jacobian for one datapoint). We
find that the total CPU and GPU time for the compositional algorithm is only slightly slower than
running a pass of the flow model without coding, whereas the black box algorithm is significantly
slower due to Jacobian computation. This confirms that our Jacobian-free coding techniques are
crucial for practical use.

Table 2: Encoding time (in seconds per datapoint). Decoding times are nearly identical (Appendix C)

Algorithm Batch size CIFAR10 ImageNet 32x32 ImageNet 64x64

Black box (Algorithm 1) 1 64.37 ± 1.05 534.74 ± 5.91 1349.65 ± 2.30

Compositional (Section 3.4.3) 1 0.77 ± 0.01 0.93 ± 0.02 0.69 ± 0.02
64 0.09 ± 0.00 0.17 ± 0.00 0.18 ± 0.00

Neural net only, without coding 1 0.50 ± 0.03 0.76 ± 0.00 0.44 ± 0.00
64 0.04 ± 0.00 0.13 ± 0.00 0.05 ± 0.00

5 Related work

We have built upon bits-back coding [47, 18, 38, 13, 12, 42, 26] to enable flow models to perform
lossless compression, which is already possible with VAEs and autoregressive models with certain
tradeoffs. VAEs and flow models (RealNVP-type models specifically) currently attain similar
theoretical codelengths on image datasets [19, 29] and have similarly fast coding algorithms, but
VAEs are more difficult to train due to posterior collapse [4], which implies worse net codelengths
unless carefully tuned by the practitioner. Compared with the most recent instantiation of bits-back
coding for hierarchical VAEs [26], our algorithm and models attain better net codelengths at the
expense of a large number of auxiliary bits: on 32x32 ImageNet, we attain a net codelength of 3.88
bits/dim at the expense of approximately 40 bits/dim of auxiliary bits (depending on hyperparameter
settings), but the VAEs can attain a net codelength of 4.48 bits/dim with only approximately 2.5
bits/dim of auxiliary bits [26]. As discussed in Section 4, auxiliary bits pose a problem when coding
a few datapoints at a time, but not when coding long sequences like entire test sets or long videos.
It would be interesting to examine the compression performance of models which are VAE-flow
hybrids, of which dequantized flows are a special case (Section 3.5).

Meanwhile, autoregressive models currently attain the best codelengths (2.80 bits/dim on CIFAR10
and 3.44 bits/dim on ImageNet 64x64 [6]), but decoding, just like sampling, is extremely slow due to
serial model evaluations. Both our compositional algorithm for RealNVP-type flows and algorithms
for VAEs built from independent distributions are parallelizable over data dimensions and use a single
model pass for both encoding and decoding.

Concurrent work [17] proposes Eq. (6) and its analysis in Appendix A to connect flows with VAEs
to design new types of generative models, while by contrast, we take a pretrained, off-the-shelf
flow model and employ Eq. (6) as artificial noise for compression. While the local bits-back coding
concept and the black-box Algorithm 1 work for any flow, our fast linear time coding algorithms
are specialized to autoregressive flows and the RealNVP family; it would be interesting to find fast
coding algorithms for other types of flows [15, 3], investigate non-image modalities [28, 35], and
explore connections with other literature on compression with neural networks [1, 2, 16, 40, 37].

6 Conclusion

We presented local bits-back coding, a technique for designing lossless compression algorithms
backed by flow models. Along with a compression interpretation of dequantization, we presented
concrete coding algorithms for various types of flows, culminating in an algorithm for RealNVP-type
models that is fully parallelizable for encoding and decoding, runs in linear time and space, and
achieves codelengths very close to theoretical predictions on high-dimensional data. As modern flow
models attain excellent theoretical codelengths via straightforward, stable training, we hope that they
will become viable for practical compression with the help of our algorithms, and more broadly, we
hope that our work will open up new possibilities for deep generative models in compression.

8

• Specializing local bits-back to the RealNVP structure speeds
up compression by orders of magnitude

Conclusion
• Local bits-back coding: compression with flow models

• Naive algorithm: exponential time in data dimension

• Our algorithm for general flows: polynomial time

• Our algorithm for RealNVP family: linear time and
parallelizable

• For algorithm details and comparisons to other types of
models, come to our poster!

• Open source: github.com/hojonathanho/localbitsback

https://github.com/hojonathanho/localbitsback

